Download presentation
Presentation is loading. Please wait.
Published byAllison Gregory Modified over 9 years ago
1
SREPS Priority Project: final report C. Marsigli, A. Montani, T. Paccagnella ARPA-SIMC - HydroMeteorological Service of Emilia- Romagna, Bologna, Italy F. Gofa, P. Louka HNMS – Hellenic National Meteorological Service, Athens, Greece
2
Last FTEs of Chiara were used for this TASK
3
ROMEO
4
Outline COSMO-SREPS methodology system set-up analysis of the results on MAP D-PHASE DOP (JJA 2007+SON 2007) role of different kind of perturbations error vs spread boundaries from mm vs different physics ranking of different driving models and of different physics conclusions
5
analysis of the results on MAP D-PHASE DOP (JJA 2007+SON 2007) role of different kind of perturbations error vs spread boundaries from mm vs different physics ranking of different driving models and of different physics conclusions
6
System set-up 16 COSMO runs 10 km hor. res. 40 vertical levels COSMO at 25 km on IFS IFS – ECMWF global by INM Spain COSMO at 25 km on GME GME – DWD global COSMO at 25 km on UM UM – UKMO global COSMO at 25 km on GFS GFS – NCEP global P1: control (ope) P2: conv. scheme (KF) P3: tur_len=1000 P4: pat_len=10000 00 UTC JJA=53 SON=54
7
DOP SON=54 runs JJA=53 runs COSMO observations
8
intra-group distance Z500 COSMO analysis JJA 2007 - 50 daysSON 2007 - 49 days Same driving model Different model parameters Same model parameters Different driving model role of different kind of perturbations
9
intra-group distance JJA 2007 - 50 days z500 COSMO analysis COSMO-SREPS Different driving models play the major role
10
intra-group distance SON 2007 - 49 days z500 COSMO analysis COSMO-SREPS
11
intra-group distance JJA 2007 - 50 days t850 COSMO analysis COSMO-SREPS
12
intra-group distance SON 2007 - 49 days t850 COSMO I7 analysis COSMO-SREPS
13
intra-group distance 2mT Northern Italy JJA 2007 - 50 daysSON 2007 - 49 days
15
SYNOP over D-PHASE area - Nearest grid point JJA07SON07 2m T - relationship between error and spread COSMO I7 analysis error vs spread Underdispersive
16
Synop stations on the Alpine area 218 stations
17
spread/skill relationship 2mT Alpine area (synop stations) +12h+24h+36h +48h+60h+72h
18
spread/skill relationship 2mT Alpine area (synop stations) +12h+24h+36h +48h+60h+72h Underdispersive
19
t850 relationship between EM error and spread COSMO-I7 interpolated on SYNOP stations over the Alpine area JJA07
20
t850 relationship between error and spread COSMO-I7 interpolated on SYNOP stations over the Alpine area SON07
21
spread/skill relationship t850 Alpine area (COSMO analyses) +12h+24h+36h +48h+60h+72h
22
spread/skill relationship t850 Alpine area (COSMO analyses) +12h+24h+36h +48h+60h+72h
23
Z500 relationship between error and spread COSMO-I7 interpolated on Northern Italy stations and SYNOP stations over the Alpine area JJA07
24
Z500 relationship between error and spread COSMO-I7 interpolated on SYNOP stations over the Alpine area SON07
25
TP 24h – ave 0.5x0.5 JJA07 +30h noss 1400 700 400 150 50 IT + CH +54h Same driving models Same perturbation Big impact of multi model BCs!!!!!!! Looking at the right column it is evident that even with few members the skill does not decrease too much when the driving models are different. Same perturbation
26
TP 24h – ave 0.5x0.5 noss 800 500 300 100 50 SON07 +30h IT + CH +54h Same driving model Same perturbation
27
JJA07SON07 pert father +30hIT + CH
28
JJA07 +30h ITIT + CH Same driving model Same perturbation
29
2m temperature - BIAS Synop observations over Alpine area Nearest grid point – lsm + altitude correction JJA07 ecmwf gme ncep ukmo p4
30
2m temperature - MAE Synop observations over Alpine area Nearest grid point – lsm + altitude correction JJA07 ecmwf gme ncep ukmo p4
31
2m temperature - BIAS Synop observations over Alpine area Nearest grid point – lsm + altitude correction SON07 ecmwf gme ncep ukmo p4
32
2m temperature - MAE Synop observations over Alpine area Nearest grid point – lsm + altitude correction SON07 ecmwf gme ncep ukmo p4
33
Deterministic scores – ave 0.5 x 0.5 IT 1mm/24h5mm/24h10mm/24h father
34
Deterministic scores – ave 0.5 x 0.5 IT 1mm/24h5mm/24h10mm/24h father
35
Deterministic scores – ave 0.5 x 0.5 IT pert 1mm/24h5mm/24h10mm/24h
36
Deterministic scores – ave 0.5 x 0.5 IT 1mm/24h5mm/24h10mm/24h pert
37
Test of more parameter perturbations (same father) 16 LM runs at 10 km P1: control (ope) P2: conv. scheme (KF) P3: parameter 1 P4: parameter 2 P5: … IFS – ECMWF global SON 07
38
T2m deterministic scores – npo IT ctrl KF tur_len=150 tur_len=1000 pat_len=10000 rat_sea=1 rat_sea=60 qc0=0.001 crsmin=50 crsmin=200 c_soil=0 c_soil=2 c_lnd=1 c_lnd=10 rlam_heat=0.1 rlam_heat=10
39
T2m deterministic scores – npo IT ctrl KF tur_len=150 tur_len=1000 pat_len=10000 rat_sea=1 rat_sea=60 qc0=0.001 crsmin=50 crsmin=200 c_soil=0 c_soil=2 c_lnd=1 c_lnd=10 rlam_heat=0.1 rlam_heat=10
40
Preliminary Conclusions Perturbations -Multi Model ICs/BCs & Perturbations on Ph. Params: the use of different driving models seems to dominate with respect to physics parameter perturbations as regards the contribution to the spread; these contributions are different in the two seasons (2mT) the selected parameters produce a detectable spread among members with the same father (driving model) spread-skill relationship : a correlation between error and spread exists, but the system is under-dispersive -> a better representation of model error is needed the different driving models contribute differently to the ensemble skill, but there is a strong dependence on forecast range, season, verification area the different perturbations can contribute differently to the ensemble skill as well
41
On-going activities and future plans continue the analysis over the DOP MAP D-PHASE : statistical analysis of the system comparison with the other available mesoscale ensemble systems verification carried out by HNMS introduce the new parameter perturbations analyse the impact of adding soil perturbations
42
run nr.parameter nameparameter descriptionrangedefaultused 1 ctrl ope 2 lconv convection scheme T or KFTKF 3 tur_len maximal turbulent length scale [100,1000] m500150 4 tur_len maximal turbulent length scale [100,1000] m5001000 5 pat_len length scale of thermal surface patterns [0,10000] m50010000 6 rat_sea ratio of laminar scaling factors for heat over [1,100]201 7 rat_sea ratio of laminar scaling factors for heat over [1,100]2060 8 qc0 cloud water threshold for autoconversion [0.,0.001]00.001 9 10 11 12 13 c_lnd surface area density of the roughness elements over land [1,10]21 14 c_lnd surface area density of the roughness elements over land [1,10]210 15 rlam_heat scaling factor of the laminar layer depth [0.1,10]10.1 16 rlam_heat scaling factor of the laminar layer depth [0.1,10]110 crsmin c_soil Minimal stomata resistance150 1 12 0 50 200Minimal stomata resistance Surface area index of the evaporating soil [50,200] s/m ]0,c_lnd[
43
COSMO-SREPS methodology i.c. and b.c. perturbations -> INM multi-model multi- boundary ensemble (SREPS) LAM perturbations -> physics parameter perturbations LAM perturbations - smaller scale errors driving model perturbations (ics and bcs) - larger scale errors
44
System set-up 16 COSMO runs 10 km hor. res. 40 vertical levels COSMO at 25 km on IFS IFS – ECMWF global by INM Spain COSMO at 25 km on GME GME – DWD global COSMO at 25 km on UM UM – UKMO global COSMO at 25 km on GFS GFS – NCEP global P1: control (ope) P2: conv. scheme (KF) P3: tur_len=1000 P4: pat_len=10000
45
MAP D-PHASE DOP testing period COSMO-SREPS was running during the DOP, at 00 UTC 107 runs out of 183 days, 53 in JJA and 54 in SON ensemble verification
46
JJA07
47
intra-group distance JJA 2007 - 50 days 2mT Northern Italy COSMO-SREPS Same driving model Different model parameters Same model parameters Different driving model
48
intra-group distance JJA 2007 – 50 days tp6h Northern Italy Same driving model Different model parameters Same model parameters Different driving model
49
Mid Term comments Mid-upper troposphere: MULTI MODEL IC/BCs give the bigger contribution to the spread Surface/lower troposphere: model physics perturbations “gain ground”.
50
score evaluation +30h: ROC UKMO and GME the best, then ECMWF and NCEP P2 (KF) the best, then P4, P3, P1 (similar) BSS UKMO the best, ECMWF and GME the worst; NCEP improves with threshold P are similar, P2 (KF) slightly better JJA07 tp24 IT
51
score evaluation +54 : ROC similar for low thresholds, NCEP the best for high thresholds, then ECMWF P similar, P3 slightly better BSS ECMWF the best, GME the worst; NCEP improves with threshold P2 (KF) the worst, P3 the best but similar to P1 and P4 JJA07 tp24 IT
52
15102030 EC+30ROC BSS +54ROC BSS MO+30ROC BSS +54ROC BSS GME+30ROC BSS +54ROC BSS AVN+30ROC BSS +54ROC BSS
53
15102030 EC+30ROC****** * BSS +54ROC BSS MO+30ROC****** BSS +54ROC BSS GME+30ROC*************** BSS +54ROC BSS AVN+30ROC******** BSS +54ROC BSS
54
TP 24h – ave 0.5x0.5 JJA07 +30h noss 700 350 200 60 20 IT +54h father pert
55
TP 24h – ave 0.5x0.5 JJA07 +30h IT +54h father pert noss 700 350 200 60 20 Grosso impatto del MULTI MODEL ai boundaries!!!!!!! Looking at the right column it is evident that even with few members the skill does not decrease too much when the driving models are different.
56
score evaluation +30h: ROC UKMO > GME > ECMWF > NCEP P2 (KF) the best, the others are similar BSS NCEP better for high threshold; UKMO > ECMWF > GME P2 (KF) the worst, the others are similar JJA07 tp24 IT+CH
57
score evaluation +54 : ROC similar for low thresholds, NCEP and GME best for high thresholds P similar; P2 (KF) slightly better for high thresholds BSS ECMWF the best, NCEP the worst P similar; P2 (KF) slightly worse JJA07 tp24 IT+CH
58
TP 24h – ave 0.5x0.5 JJA07 +30h noss 1400 700 400 150 50 IT + CH +54h father pert
59
TP 24h – ave 0.5x0.5 JJA07 +30h noss 1400 700 400 150 50 IT + CH +54h father pert The performances reverse eith the leading time. Bad skill adding switzerlad.
60
Deterministic scores – ave 0.5 x 0.5 IT+CH 1mm/24h5mm/24h10mm/24h father
61
Deterministic scores – ave 0.5 x 0.5 IT+CH 1mm/24h5mm/24h10mm/24h father
62
Deterministic scores – ave 0.5 x 0.5 IT+CH 1mm/24h5mm/24h10mm/24h pert
63
Deterministic scores – ave 0.5 x 0.5 IT+CH 1mm/24h5mm/24h10mm/24h pert
64
Deterministic scores – ave 0.5 x 0.5 IT 1mm/24h5mm/24h10mm/24h father noss 250 100 50
65
Deterministic scores – ave 0.5 x 0.5 IT 1mm/24h5mm/24h10mm/24h father noss 250 100 50
66
Deterministic scores – ave 0.5 x 0.5 IT pert 1mm/24h5mm/24h10mm/24h noss 250 100 50
67
Deterministic scores – ave 0.5 x 0.5 IT 1mm/24h5mm/24h10mm/24h pert noss 250 100 50
68
6h accumulated precipitation relationship between error and spread obs Northern Italy L1
69
Relationship between error and spread Northern Italy observations Nearest grid point applicata correzione per la quota LAPSE=0.7 eliminati dati minori di –10 e maggiori di +42 t2m
70
Relationship between error and spread SYNOP over MAP area Nearest grid point t2m applicata correzione per la quota LAPSE=0.7 all (16 members)
71
Relationship between error and spread SYNOP over MAP area Nearest grid point t2m applicata correzione per la quota LAPSE=0.7 GME only (4 members)
72
Relationship between error and spread SYNOP over MAP area Nearest grid point t2m applicata correzione per la quota LAPSE=0.7 ECMWF only (4 members)
73
Relationship between error and spread SYNOP over MAP area Nearest grid point t2m applicata correzione per la quota LAPSE=0.7 NCEP only (4 members)
74
Relationship between error and spread SYNOP over MAP area Nearest grid point t2m applicata correzione per la quota LAPSE=0.7 UKMO only (4 members)
75
Relationship between error and spread SYNOP over MAP area Nearest grid point t2m applicata correzione per la quota LAPSE=0.7
76
2m temperature relationship between error and spread COSMO-I7 interpolated on Northern Italy stations and SYNOP stations over the Alpine area
77
SON07
78
6h precipitation - BSS Northern Italy observations Average over 0.5 x 0.5 deg boxes
79
6h precipitation – ROC area Northern Italy observations Average over 0.5 x 0.5 deg boxes
80
Daily precipitation - BSS Northern Italy + Switzerland observations Average over 0.5 x 0.5 deg boxes
81
Daily precipitation reliability and resolution Northern Italy + Switzerland observations Average over 0.5 x 0.5 deg boxes
82
Daily precipitation - ROC area Northern Italy + Switzerland observations Average over 0.5 x 0.5 deg boxes
83
Relationship between error and spread Northern Italy observations Nearest grid point eliminati dati minori di –10 e maggiori di +42 tp 6h
84
Relationship between error and spread Northern Italy observations Nearest grid point t2m applicata correzione per la quota LAPSE=0.7 eliminati dati minori di –10 e maggiori di +42
85
Relationship between error and spread SYNOP over MAP area Nearest grid point t2m applicata correzione per la quota LAPSE=0.7
86
2m temperature relationship between error and spread COSMO-I7 interpolated on SYNOP stations over the Alpine area
87
intra-group distance SON 2007 - 49 days 2mT Northern Italy COSMO-SREPS Same driving model Different model parameters Same model parameters Different driving model
88
intra-group distance SON 2007 - 49 days tp6h Northern Italy COSMO-SREPS
89
score evaluation +30h: ROC crossing; UKMO and ECMWF slightly better, GME worse P2 (KF) the best, the others are similar BSS ECMWF the best, GME the worst P are similar, P2 (KF) slightly better SON07 tp24 IT
90
score evaluation +54 : ROC NCEP the best, GME the worst P2 (KF) the best, the others are similar BSS similar SON07 tp24 IT
91
TP 24h – ave 0.5x0.5 SON07 +30h IT +54h father pert noss 550 300 200 80 50
92
TP 24h – ave 0.5x0.5 SON07 +30h IT +54h father pert noss 550 300 200 80 50
93
score evaluation +30h: ROC similar; for high thresholds ECMWF is the best and GME the worst similar; P2 (KF) slightly better BSS ECMWF the best and GME the worst,, especially with increasing threshold P are similar, P4 (tur_len=1000) better for the last thresholds SON07 tp24 IT+CH
94
score evaluation +54 : ROC NCEP the best, GME the worst similar, P2 (KF) slightly better BSS ECMWF the best, UKMO the worst similar SON07 tp24 IT+CH
95
TP 24h – ave 0.5x0.5 SON07 +30h IT + CH +54h father pert noss 800 500 300 100 50
96
TP 24h – ave 0.5x0.5 SON07 +30h IT + CH +54h father pert noss 800 500 300 100 50
97
Deterministic scores – ave 0.5 x 0.5 IT 1mm/24h5mm/24h 10mm/24h father
98
Deterministic scores – ave 0.5 x 0.5 IT 1mm/24h5mm/24h10mm/24h father
99
Deterministic scores – ave 0.5 x 0.5 IT pert 1mm/24h5mm/24h10mm/24h
100
Deterministic scores – ave 0.5 x 0.5 IT 1mm/24h5mm/24h10mm/24h pert
101
Deterministic scores – ave 0.5 x 0.5 IT+CH father 1mm/24h5mm/24h 10mm/24h
102
Deterministic scores – ave 0.5 x 0.5 IT+CH 1mm/24h5mm/24h10mm/24h father
103
Deterministic scores – ave 0.5 x 0.5 IT+CH pert 1mm/24h5mm/24h 10mm/24h
104
Deterministic scores – ave 0.5 x 0.5 IT+CH 1mm/24h5mm/24h10mm/24h pert
105
Deterministic scores – ave 0.5 x 0.5 IT 1mm/24h5mm/24h10mm/24h father noss 250 100 50
106
Deterministic scores – ave 0.5 x 0.5 IT 1mm/24h5mm/24h10mm/24h father noss 250 100 50
107
Deterministic scores – ave 0.5 x 0.5 IT pert 1mm/24h5mm/24h10mm/24h noss 250 100 50
108
Deterministic scores – ave 0.5 x 0.5 IT 1mm/24h5mm/24h10mm/24h pert noss 250 100 50
109
Test of more parameter perturbations (same father) 16 LM runs at 10 km P1: control (ope) P2: conv. scheme (KF) P3: parameter 1 P4: parameter 2 P5: … IFS – ECMWF global SON 07
110
run nr.parameter nameparameter descriptionrangedefaultused 1 ctrl ope 2 lconv convection scheme T or KFTKF 3 tur_len maximal turbulent length scale [100,1000] m500150 4 tur_len maximal turbulent length scale [100,1000] m5001000 5 pat_len length scale of thermal surface patterns [0,10000] m50010000 6 rat_sea ratio of laminar scaling factors for heat over sea [1,100]201 7 rat_sea ratio of laminar scaling factors for heat over sea [1,100]2060 8 qc0 cloud water threshold for autoconversion [0.,0.001]00.001 9 10 11 12 13 c_lnd surface area density of the roughness elements over land [1,10]21 14 c_lnd surface area density of the roughness elements over land [1,10]210 15 rlam_heat scaling factor of the laminar layer depth [0.1,10]10.1 16 rlam_heat scaling factor of the laminar layer depth [0.1,10]110 crsmin c_soil Minimal stomata resistance150 1 12 0 50 200Minimal stomata resistance Surface area index of the evaporating soil [50,200] s/m ]0,c_lnd[
111
T2m deterministic scores – npo IT ctrl KF tur_len=150 tur_len=1000 pat_len=10000 rat_sea=1 rat_sea=60 qc0=0.001 crsmin=50 crsmin=200 c_soil=0 c_soil=2 c_lnd=1 c_lnd=10 rlam_heat=0.1 rlam_heat=10
112
T2m deterministic scores – npo IT ctrl KF tur_len=150 tur_len=1000 pat_len=10000 rat_sea=1 rat_sea=60 qc0=0.001 crsmin=50 crsmin=200 c_soil=0 c_soil=2 c_lnd=1 c_lnd=10 rlam_heat=0.1 rlam_heat=10
113
T2m deterministic scores – npo IT piamon
114
Td2m deterministic scores – npo IT ctrl KF tur_len=150 tur_len=1000 pat_len=10000 rat_sea=1 rat_sea=60 qc0=0.001 crsmin=50 crsmin=200 c_soil=0 c_soil=2 c_lnd=1 c_lnd=10 rlam_heat=0.1 rlam_heat=10 ctrl KF tur_len=150 tur_len=1000 pat_len=10000 rat_sea=1 rat_sea=60 qc0=0.001 crsmin=50 crsmin=200 c_soil=0 c_soil=2 c_lnd=1 c_lnd=10 rlam_heat=0.1 rlam_heat=10
115
Td2m deterministic scores – npo IT ctrl KF tur_len=150 tur_len=1000 pat_len=10000 rat_sea=1 rat_sea=60 qc0=0.001 crsmin=50 crsmin=200 c_soil=0 c_soil=2 c_lnd=1 c_lnd=10 rlam_heat=0.1 rlam_heat=10
116
Td2m deterministic scores – npo IT piamon
117
TP deterministic scores – ave 0.5 x 0.5 IT 1mm/6h ctrl KF tur_len=150 tur_len=1000 pat_len=10000 rat_sea=1 rat_sea=60 qc0=0.001 crsmin=50 crsmin=200 c_soil=0 c_soil=2 c_lnd=1 c_lnd=10 rlam_heat=0.1 rlam_heat=10 noss 452 479 470 447
118
TP deterministic scores – ave 0.5 x 0.5 IT 1mm/6h ctrl KF tur_len=150 tur_len=1000 pat_len=10000 rat_sea=1 rat_sea=60 qc0=0.001 crsmin=50 crsmin=200 c_soil=0 c_soil=2 c_lnd=1 c_lnd=10 rlam_heat=0.1 rlam_heat=10 noss 452 479 470 447
119
TP deterministic scores – ave 0.5 x 0.5 IT 1mm/6h ctrl KF tur_len=150 tur_len=1000 pat_len=10000 rat_sea=1 rat_sea=60 qc0=0.001 crsmin=50 crsmin=200 c_soil=0 c_soil=2 c_lnd=1 c_lnd=10 rlam_heat=0.1 rlam_heat=10 noss 452 479 470 447
120
TP deterministic scores – ave 0.5 x 0.5 IT 10mm/6h ctrl KF tur_len=150 tur_len=1000 pat_len=10000 rat_sea=1 rat_sea=60 qc0=0.001 crsmin=50 crsmin=200 c_soil=0 c_soil=2 c_lnd=1 c_lnd=10 rlam_heat=0.1 rlam_heat=10 noss 73 81 69 70
121
TP deterministic scores – ave 0.5 x 0.5 IT 10mm/6h ctrl KF tur_len=150 tur_len=1000 pat_len=10000 rat_sea=1 rat_sea=60 qc0=0.001 crsmin=50 crsmin=200 c_soil=0 c_soil=2 c_lnd=1 c_lnd=10 rlam_heat=0.1 rlam_heat=10 noss 73 81 69 70
122
TP deterministic scores – ave 0.5 x 0.5 IT 10mm/6h ctrl KF tur_len=150 tur_len=1000 pat_len=10000 rat_sea=1 rat_sea=60 qc0=0.001 crsmin=50 crsmin=200 c_soil=0 c_soil=2 c_lnd=1 c_lnd=10 rlam_heat=0.1 rlam_heat=10 noss 73 81 69 70
123
t BIAt MAEtd BIAtd MAEtp1 BStp1 TStp1 FAtp10 BStp10 TStp10 FA KF == >== <><>>><> tur_len=150 = <== >==<> <= <= tur_len=1000 = >= <===<> => <24= pat_len=10000 ><>= <= > >= <>> <24 24 rat_sea=1 = >= <>= >><> > = >24 rat_sea=60 = <= >< <<>= << = > qc=0.001 ====== <>=> <24 24 crsmin=50 = <== >= <= = >=== crsmin=200 ======= <=== c_soil=0 ><<><><= <=<> c_soil=2 <>>>>= <>==<> c_lnd=1 = <>>>====== c_lnd=10 ><<>= <= == rlam_heat=0.1 <>= >> ><>>= >== rlam_heat=10 <>= <<<>< <= <== ---+++
124
lconv=KFtur_len=150tur_len=1000 pat_len=10000rat_sea=1rat_sea=60qc0=0.001 crsmin=50crsmin=200c_soil=0c_soil=2 c_lnd=1c_lnd=10rlam_heat=0.1rlam_heat=10 ctrl CSPERT fc-ctrl differences +12h 04/05/07 06-12 UTC mm/6h
125
CSPERT fc-obs differences +12h lconv=KFtur_len=150tur_len=1000 pat_len=10000rat_sea=1rat_sea=60qc0=0.001 crsmin=50crsmin=200c_soil=0c_soil=2 c_lnd=1c_lnd=10rlam_heat=0.1rlam_heat=10 ctrl -5 5 5 20 20 50 -5 -20 -20 -50 mm/6h
126
CSPERT forecasts +12h 06-12 UTC 04/05/07
127
Comparisons
128
SYNOP over MAP area - Nearest grid point JJA07SON07 2m T - relationship between error and spread COSMO-I7 analyses
129
intra-group distance 2mT Northern Italy JJA 2007 - 50 daysSON 2007 - 49 days
130
intra-group distance tp6h northern Italy JJA 2007 - 50 daysSON 2007 - 49 days
131
intra-group distance t850 COSMO analysis JJA 2007 - 50 daysSON 2007 - 49 days
132
intra-group distance Z500 COSMO analysis JJA 2007 - 50 daysSON 2007 - 49 days
133
JJA07SON07 pert father +30hIT + CH
134
JJA07SON07 pert father +30hIT
135
JJA07 pert father +30h ITIT + CH
136
SON07 pert father +30h ITIT + CH
137
score evaluation 2m t: BIA > 0 GME the largest (+), then UKMO, ECMWF, NCEP mixed P4 (tur_len=1000) the largest (+), for any father MAE GME the smallest, then UKMO, ECMWF, NCEP mixed P4 (tur_len=1000) the largest, especially for GME at night JJA07
138
score evaluation 2m t: BIA < 0 ECMWF the largest (-), then GME, NCEP and UKMO P4 (tur_len=1000) the more positive, for any father; P1, P2, P3 similar MAE ECMWF the largest, then GME, NCEP and UKMO P4 (tur_len=1000) the smallest; P1, P2, P3 similar SON07
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.