Presentation is loading. Please wait.

Presentation is loading. Please wait.

Irina Gorodetskaya *, Hubert Gallée, Gerhard Krinner Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble,France * Now at: Katholieke.

Similar presentations


Presentation on theme: "Irina Gorodetskaya *, Hubert Gallée, Gerhard Krinner Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble,France * Now at: Katholieke."— Presentation transcript:

1 Irina Gorodetskaya *, Hubert Gallée, Gerhard Krinner Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble,France * Now at: Katholieke Universiteit Leuven, Belgium CHARMANT, LGGE 19 October, 2009 Comparison of surface mass balance components simulated by LMDZ and MAR forced with LMDZ

2 SMB compilations Vaughan et al. 1999 Giovinetto and Bentley 1985 van den Berg et al. 2006: observations van den Berg et al. 2006: calibrated model 166 mmwe 171 mmwe

3 Changes in precipitation? Linear trends of annual snowfall accumulation (mm yr -1 decade -1 ) for 1955-2004 Monaghan et al 2008

4 Predicted precipitation change: LMDZ (IPSL) Krinner et al. 2007, 2008 Precipitation change: 2081-2100 / 1981-2000 SIC changes: (2081-2100) - (1981-2000)

5 Large-scale model (ECMWF or GCM) Mesoscale model (MAR) Nesting: MAR forced with LMDZ output

6 Atmospheric model: mesoscale hydrostatic primitive equation model (Gallée 1994, 1995)  Terrain following vertical coordinates (normalized pressure)  Turbulence: 1 1/2 closure (Duynkerke 1988)  Bulk cloud microphysics (Kessler 1962 and Lin et al 1983 + improvements of Meyers et al. 1992 and Levkov et al. 1992)  Solar and infrared radiative transfer scheme (Morcrette 2002, Ebert and Curry 1992)  Snow fall included into infrared radiation scheme Snow model: conservation of heat and water (solid and liquid), description of snow properties (density, dendricity, sphericity and size of the grains), melting/freezing Blowing snow model (Gallée et al, 2001) FSFS FSFS FLFL T4T4 H Lat H Sen Snow H Melt H Freez H Cond Tsfc Percolati on Liquid water             Blowing snow coupling to sea ice, land ice, vegetation...  Horizontal resolution 40 km  33 vertical levels (lowest ~9m, one level each 10 m below 50 m; top = 10hPa)  Initial and boundary conditions: LMDZ4 Modèle Atmosphérique Régional (MAR)

7 Relative annual mean precipitation change: Krinner et al. 2007 LMDZ (IPSL): 2081-2100 / 1981-2000 MAR (lmdz forced): 2082 / 1982

8 Surface mass balance, mm w.e. 1981-1989 MAR (lmdz forced)LMDZ 175 mmwe 42 mmwe

9 Ratio between simulated SMB in S20 and estimates by Vaughan et al. 1999 Ratio between LMDZ-simulated SMB and observed SMB in selected locations Krinner et al. 2007

10 SMB components: LMDZ 1981-1989 Snow fallSublimation surface Total melt units: mmwe Effective melt 220 mmwe 17 mmwe 29 mmwe

11 SMB components: MAR 1981-1989 Snow fall minus erosion Sublimation surface Melt Sublimation drifting snow units: mmwe 62 mmwe 14 mmwe 5 mmwe 7 mmwe

12 Annual snow fall, mmwe Difference: MAR-LMZ 1981-1989 LMDZ: 220 mmwe MAR: 62 mmwe MAR-LMDZ: -128 mmwe

13 MAR : removal by wind erosion Blowing snow flux Snow fall minus erosion

14 Surface sublimation/deposition MEAN = 14 mmwe/yr MAR, 1981-1989: ECMWF ERA-15, 1979-1993 Déry and Yau, 2002 MEAN = 14 mmwe/yr

15 Sublimation of drifting snow MEAN = 6 mmwe/yr MAR, 1981-1989, Liu et al 1983 parametrization: ECMWF ERA-15, 1979-1993 Déry and Yau, 2002 MEAN = 15 mmwe/yr

16 Ablation areas MAR SMB, mmwe/yr Ablation areas van den Broeke et al, 2006 Blue = Blue ice areas > 10% (Winther et al. 2001) Red diam = meteorite sites AIS

17 Conclusions LMDZ and MAR : large differences in SMB LMDZ: - large precipitation and large melt = compensate - only two processes: precip and surface sublimation - melt calculated offline MAR: - snow fall is corrected for erosion = impossible to separate - lack of snow fall or too much erosion by wind - additional ablation processes: snow drift sublimation - melt is simulated  large local differences two models especially over the coasts  need more observations to tell which one is right

18

19

20 Surface mass balance from a GCM: Laboratoire de Meteorologie Dynamique general circulation model (LMDZ) Krinner et al. 2007 mmwe 1981-2000 (S20)

21 SMB components: LMDZ 1981-2000 Melt Precip Sublimation/ deposition Krinner et al. 2007 mmwe

22 Annual mean precipitation: MAR(lmdz forced) - LMDZ LMDZ: only snow fall (no erosion) MAR: precip-erosion (blowing snow parameterization) 1980-1985 mmwe

23 Gallée and Gorodetskaya, Clim Dyn 2008 Surface air temperature over Dome C, East Antarctica MAR validation : Dome C (ECMWF forcing)

24 Model validation : South Pole (ECMWF forcing) Power spectrum (units 2 /time) Town, Gorodetskaya, Walden, Warren, in prep

25 warm events Snow accumulation, mm.w.e Integrated snow, mm.w.e Snow accumulation at South Pole (MAR forced with ERA-40) 1994 PSCs Gorodetskaya, Town, Gallée, in prep 54% 24% 7% 11%4%

26 MAR forced with LMDZ vs LMDZ itself : MAR - larger amplitude! r=0.6

27 SMB changes: from 1982 to 2082 Diff: 2082-1982 Ratio: 2082/1982 MAR forced with LMDZ mmwe

28 Relative annual mean precipitation change: Krinner et al. 2007 LMDZ (IPSL): 2081-2100 / 1981-2000 MAR (lmdz forced): 2082 / 1982

29 Annual mean surface temperature change: 2082-1982 Precipitation change: 2082/1982 ratio MAR forced with LMDZ

30 Annual mean sea ice concentration change LMDZ [2081-2100] - [1981-2000] % Krinner et al. 2007


Download ppt "Irina Gorodetskaya *, Hubert Gallée, Gerhard Krinner Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble,France * Now at: Katholieke."

Similar presentations


Ads by Google