Presentation is loading. Please wait.

Presentation is loading. Please wait.

Methods for 3D Shape Matching and Retrieval

Similar presentations


Presentation on theme: "Methods for 3D Shape Matching and Retrieval"— Presentation transcript:

1 Methods for 3D Shape Matching and Retrieval
Marcin Novotni & Reinhard Klein University of Bonn Computer Graphics Group

2 Our Aim #1 … , , , Given an example: Find the most similar object(s)
in a database , , , Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3 Motivation Lots of 3D archives: Search engines for data: WWW
Proprietary databases ... Search engines for data: Text, 2D images, music (MIDI), … Emerging since 1998 for 3D Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

4 Our Aim #2 Direct matching Alignment Establishing correspondences
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

5 Motivation Partial matching/retrieval Marcin Novotni  Reinhard Klein
University of Bonn  Computer Graphics Group

6 Motivation Partial matching/retrieval Statistical shape analysis
Morphing Texture transfer Registration Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

7 General Problem Abstract representation facilitating:
identification of salient features of 3D objects description of features comparison (matching) Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

8 Overview Matching for 3D Shape Retrieval Correspondence Matching
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

9 Matching for 3D Shape Retrieval
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

10 → D( ) D : General Problem We need a Descriptor
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

11 d( , ) d( , ) D( ) D( ) : = General Problem We need a Distance Measure
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

12 d( , ) d( , ) d( , ) ≤ ≤ General Problem We need a Distance Measure :
Close to (application driven) notion of resemblance Computationally cheap and robust d( , ) d( , ) d( , ) Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

13 D( ) ≡ x1 xn 3D Zernike Descriptors Feature vectors
Xi : 3D Zernike Descriptors [Canterakis ’99, Novotni & Klein ’03, ’04] Distance Measure: Euclidean Distance D( ) ≡ x1 xn Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

14 3D Zernike Descriptors Retrieval performance [Novotni & Klein ‘03 ’04]
Slightly better than [Funkhouser et al. ’02] Object class dependent performance! Class dependent coefficient importance! Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

15 3D Zernike Descriptors Faces Chairs Airplanes Importance
Coeff No. (Frequency) Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

16 3D Zernike Descriptors Relevance feedback: Learning Machines:
User selects relevant / irrelevant items Distance measure is tuned Learning Machines: SVM (Support vector machines) [Vapnik ‘95] One class SVM [Schölkopf et al. ’99] (K)BDA ((Kernel) Biased Discriminant Analysis) [Zhou et al. ‘01] Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

17 Correspondence Matching
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

18 Geometric Similarity Estimation
Idea [Novotni & Klein 2001]: Definition of „geometric“ similarity in terms of a geometric distance Intuitive, simple, robust. Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

19 Geometric Similarity Estimation
Database objects example Normalized volumetric error 0.00 6.78 8.85 30.29 38.09 67.53 Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

20 Geometric Similarity Estimation
Classification by user set threshold Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

21 Geometric Similarity Estimation
Measures deformation magnitude Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

22 Correspondence Matching
? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

23 Correspondence Matching
? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

24 Correspondence Matching
? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

25 Correspondence Matching
? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

26 Correspondence Matching
Ideally: dense mapping ? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

27 Correspondence Matching
Ideally: dense mapping Deformation by mapping semantics [D’Arcy Thompson 1917: On Growth and Form ] Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

28 Correspondence Matching
Ideally: dense mapping Easier: mapping salient points Curvature extremes Corners (Harris points in 2D) Etc… Scale space extremes Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

29 Correspondence Matching
Ideally: dense mapping Easier: mapping salient points Curvature extremes Corners (Harris points in 2D) Etc… Scale space extremes Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

30 Correspondence Matching
Scale Space extremes [Lindeberg ‘94] Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

31 Correspondence Matching
We have: Salient points Spatial position Size of local blobs How to match??? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

32 Correspondence Matching
Criteria for correspondences: Similar Local geometries Constellations of points Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

33 Correspondence Matching
Criteria for correspondences: Similar Local geometries Constellations of points Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

34 Correspondence Matching
Local description Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

35 Correspondence Matching
Local description Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

36 Correspondence Matching
Assumption: Similar local descriptors Similar local geometries Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

37 Correspondence Matching
Criteria for correspondences: Similar Local geometries Constellations of points Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

38 Correspondence Matching
Similar constellations of points Smooth mappings leave constellations consistent Idea Constellations are consistent if mapping is smooth Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

39 Correspondence Matching
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

40 Correspondence Matching
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

41 Correspondence Matching
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

42 Correspondence Matching
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

43 Correspondence Matching
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

44 Correspondence Matching
Similar constellations of points Idea: Constellations are consistent if mapping is smooth Thin Plate Spline interpolation [Brookstein ’89]  minimize: Total curvature Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

45 Correspondence Matching
 minimize: Minimizer (Thin Plate Spline interpolator): Affine part Nonlinear deformation Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

46 Correspondence Matching
 minimize: Minimizer (Thin Plate Spline interpolator): 2D Thin Plate Spline Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

47 Correspondence Matching
 minimize: Minimizer (Thin Plate Spline interpolator): Can be computed by a (N+4)x(N+4) matrix inversion Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

48 Correspondence Matching
Find (sub)sets of correspondences: Small local descriptor distances Small deformation energy Hierarchical pruning and clustering Using: Local descriptors Geometrical constellation consistency Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

49 Correspondence Matching
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

50 Correspondence Matching
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

51 Correspondence Matching
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

52 Correspondence Matching
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

53 Correspondence Matching
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

54 Correspondence Matching
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

55 Correspondence Matching
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

56 Correspondence Matching
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

57 Correspondence Matching
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

58 Correspondence Matching
New avenues: Local Descriptions for retrieval Online Learning for local descriptions Dense matching from salient points Etc. Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

59 Danke, DFG! Marcin Novotni  Reinhard Klein
University of Bonn  Computer Graphics Group

60 3D Zernike Descriptors Basis functions in the unit sphere:
SH on the sphere We use SH on the sphere to retain rotation invariance… Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

61 3D Zernike Descriptors Basis functions in the unit sphere:
SH on the sphere Function of the radius … and a radial function other than sampling. Since the radial function depends only on the radius, the rotation invariance is preserved. Rotation invariant! Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

62 Object function, e.g. voxel grid
3D Zernike Descriptors Basis functions in the unit sphere: 3D Zernike Moments [Canterakis ‘99]: … and a radial function other than sampling. Since the radial function depends only on the radius, the rotation invariance is preserved. Object function, e.g. voxel grid Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

63 3D Zernike Descriptors 3D Zernike Descriptors:
Amplitudes of the Zernike decomposition Rotation invariant And the zernike descriptors are defined similarly to the SH amplitudes: we gather the zernike moments with upper index from –l to l for a given lower indices n and l. Due to the properties of SH, the norms of these vectors will be rotation invariant. Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

64 3D Zernike Descriptors Basis functions in the unit sphere:
SH on the sphere We use SH on the sphere to retain rotation invariance… Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

65 3D Zernike Descriptors Basis functions in the unit sphere:
SH on the sphere Function of the radius … and a radial function other than sampling. Since the radial function depends only on the radius, the rotation invariance is preserved. Rotation invariant! Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

66 Object function, e.g. voxel grid
3D Zernike Descriptors Basis functions in the unit sphere: 3D Zernike Moments [Canterakis ‘99]: … and a radial function other than sampling. Since the radial function depends only on the radius, the rotation invariance is preserved. Object function, e.g. voxel grid Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

67 3D Zernike Descriptors 3D Zernike Descriptors:
Amplitudes of the Zernike decomposition Rotation invariant And the zernike descriptors are defined similarly to the SH amplitudes: we gather the zernike moments with upper index from –l to l for a given lower indices n and l. Due to the properties of SH, the norms of these vectors will be rotation invariant. Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

68 3D Zernike Descriptors For N=22 : 155 floats as search key
Timings (1.8 GHz Pentium): Voxelization: 0.3 – 10.0 sec / object Computation: 0.2 sec / object Retrieval (1814 objects): 0.3 sec Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

69 3D Zernike Descriptors Retrieval performance [Novotni & Klein ’04]
Slightly better than [Funkhouser et al. ’02] Object class dependent performance! Class dependent coefficient importance! Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

70 3D Zernike Descriptors Faces Chairs Airplanes Importance Coeff No.
Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

71 3D Zernike Descriptors 3D Zernike functions [Canterakis ‘99]
are polynomials such that are orthonormal within the unit ball Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

72 3D Zernike Descriptors 3D Zernike functions [Canterakis ‘99]
are polynomials such that are orthonormal within the unit ball 3D Zernike Moments: The 3D Zernike moments are defined as inner products of the object function with the elements of the basis. Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

73 3D Zernike Descriptors 3D Zernike Descriptors:
Amplitudes of the Zernike decomposition Rotation invariant And the zernike descriptors are defined similarly to the SH amplitudes: we gather the zernike moments with upper index from –l to l for a given lower indices n and l. Due to the properties of SH, the norms of these vectors will be rotation invariant. Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

74 3D Zernike Descriptors For N=20 : 121 floats as search key
Timings (1.8 GHz Pentium): Voxelization: 0.3 – 10.0 sec / object Computation: 0.2 sec / object Retrieval (1814 objects): 0.3 sec Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

75 3D Zernike Descriptors Retrieval performance [Novotni & Klein ’04]
Slightly better than [Funkhouser et al. ’02] Object class dependent performance! Class dependent coefficient importance! Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

76 Correspondence Matching
Matching should be: Independent of topology Robust Suitable for partial matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

77 Correspondence Matching
Local description Local shape histograms  Not rotation invariant Rotation invariance  Amplitudes of the Fourier Transform Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

78 3D Zernike Descriptors 155 floats as search key
Retrieval (1814 objects): 0.3 sec Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

79 Correspondence Matching
Stuff to remember: Salient points simplify the problem Smooth mapping iff consistent constellations Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

80 Correspondence Matching
Stuff to remember: Salient points simplify the problem Volumetric On the surface Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

81 Correspondence Matching
Stuff to remember: Salient points simplify the problem Smooth mapping iff consistent constellations Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

82 Correspondence Matching
New avenues: Local Descriptions for retrieval Retrieval by part selection & recognition Retrieval from large scenes Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

83 Correspondence Matching
New avenues: Local Descriptions for retrieval Online Learning for local descriptions Adopting pattern recognition methods Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

84 Correspondence Matching
New avenues: Local Descriptions for retrieval Online Learning for local descriptions Dense matching from salient points Morphing, registration, object statistics Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

85 Our Aim #2 Direct matching Alignment Marcin Novotni  Reinhard Klein
University of Bonn  Computer Graphics Group

86 Correspondence Matching
Scale space extremes [Lindeberg ‘94] Blob detection by localizing extremes of Laplacian … … in scale and space Size of the blob Position of the blob Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

87 Correspondence Matching
Maxima of Laplacian over scales Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

88 Correspondence Matching
Spatial maxima Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group


Download ppt "Methods for 3D Shape Matching and Retrieval"

Similar presentations


Ads by Google