Download presentation
Presentation is loading. Please wait.
1
Methods for 3D Shape Matching and Retrieval
Marcin Novotni & Reinhard Klein University of Bonn Computer Graphics Group
2
Our Aim #1 … , , , Given an example: Find the most similar object(s)
in a database … , , , Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3
Motivation Lots of 3D archives: Search engines for data: WWW
Proprietary databases ... Search engines for data: Text, 2D images, music (MIDI), … Emerging since 1998 for 3D Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
4
Our Aim #2 Direct matching Alignment Establishing correspondences
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
5
Motivation Partial matching/retrieval Marcin Novotni Reinhard Klein
University of Bonn Computer Graphics Group
6
Motivation Partial matching/retrieval Statistical shape analysis
Morphing Texture transfer Registration Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
7
General Problem Abstract representation facilitating:
identification of salient features of 3D objects description of features comparison (matching) Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
8
Overview Matching for 3D Shape Retrieval Correspondence Matching
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
9
Matching for 3D Shape Retrieval
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
10
→ D( ) D : General Problem We need a Descriptor
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
11
d( , ) d( , ) D( ) D( ) : = General Problem We need a Distance Measure
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
12
d( , ) d( , ) d( , ) ≤ ≤ General Problem We need a Distance Measure :
Close to (application driven) notion of resemblance Computationally cheap and robust d( , ) d( , ) d( , ) ≤ ≤ Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
13
D( ) ≡ x1 xn 3D Zernike Descriptors Feature vectors
Xi : 3D Zernike Descriptors [Canterakis ’99, Novotni & Klein ’03, ’04] Distance Measure: Euclidean Distance D( ) ≡ x1 xn Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
14
3D Zernike Descriptors Retrieval performance [Novotni & Klein ‘03 ’04]
Slightly better than [Funkhouser et al. ’02] Object class dependent performance! Class dependent coefficient importance! Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
15
3D Zernike Descriptors Faces Chairs Airplanes Importance
Coeff No. (Frequency) Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
16
3D Zernike Descriptors Relevance feedback: Learning Machines:
User selects relevant / irrelevant items Distance measure is tuned Learning Machines: SVM (Support vector machines) [Vapnik ‘95] One class SVM [Schölkopf et al. ’99] (K)BDA ((Kernel) Biased Discriminant Analysis) [Zhou et al. ‘01] Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
17
Correspondence Matching
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
18
Geometric Similarity Estimation
Idea [Novotni & Klein 2001]: Definition of „geometric“ similarity in terms of a geometric distance Intuitive, simple, robust. Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
19
Geometric Similarity Estimation
Database objects example Normalized volumetric error 0.00 6.78 8.85 30.29 38.09 67.53 Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
20
Geometric Similarity Estimation
Classification by user set threshold Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
21
Geometric Similarity Estimation
Measures deformation magnitude Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
22
Correspondence Matching
? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
23
Correspondence Matching
? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
24
Correspondence Matching
? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
25
Correspondence Matching
? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
26
Correspondence Matching
Ideally: dense mapping ? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
27
Correspondence Matching
Ideally: dense mapping Deformation by mapping semantics [D’Arcy Thompson 1917: On Growth and Form ] Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
28
Correspondence Matching
Ideally: dense mapping Easier: mapping salient points Curvature extremes Corners (Harris points in 2D) Etc… Scale space extremes Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
29
Correspondence Matching
Ideally: dense mapping Easier: mapping salient points Curvature extremes Corners (Harris points in 2D) Etc… Scale space extremes Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
30
Correspondence Matching
Scale Space extremes [Lindeberg ‘94] Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
31
Correspondence Matching
We have: Salient points Spatial position Size of local blobs How to match??? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
32
Correspondence Matching
Criteria for correspondences: Similar Local geometries Constellations of points Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
33
Correspondence Matching
Criteria for correspondences: Similar Local geometries Constellations of points Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
34
Correspondence Matching
Local description Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
35
Correspondence Matching
Local description Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
36
Correspondence Matching
Assumption: Similar local descriptors Similar local geometries Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
37
Correspondence Matching
Criteria for correspondences: Similar Local geometries Constellations of points Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
38
Correspondence Matching
Similar constellations of points Smooth mappings leave constellations consistent Idea Constellations are consistent if mapping is smooth Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
39
Correspondence Matching
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
40
Correspondence Matching
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
41
Correspondence Matching
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
42
Correspondence Matching
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
43
Correspondence Matching
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
44
Correspondence Matching
Similar constellations of points Idea: Constellations are consistent if mapping is smooth Thin Plate Spline interpolation [Brookstein ’89] minimize: Total curvature Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
45
Correspondence Matching
minimize: Minimizer (Thin Plate Spline interpolator): Affine part Nonlinear deformation Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
46
Correspondence Matching
minimize: Minimizer (Thin Plate Spline interpolator): 2D Thin Plate Spline Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
47
Correspondence Matching
minimize: Minimizer (Thin Plate Spline interpolator): Can be computed by a (N+4)x(N+4) matrix inversion Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
48
Correspondence Matching
Find (sub)sets of correspondences: Small local descriptor distances Small deformation energy Hierarchical pruning and clustering Using: Local descriptors Geometrical constellation consistency Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
49
Correspondence Matching
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
50
Correspondence Matching
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
51
Correspondence Matching
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
52
Correspondence Matching
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
53
Correspondence Matching
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
54
Correspondence Matching
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
55
Correspondence Matching
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
56
Correspondence Matching
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
57
Correspondence Matching
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
58
Correspondence Matching
New avenues: Local Descriptions for retrieval Online Learning for local descriptions Dense matching from salient points Etc. Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
59
Danke, DFG! Marcin Novotni Reinhard Klein
University of Bonn Computer Graphics Group
60
3D Zernike Descriptors Basis functions in the unit sphere:
SH on the sphere We use SH on the sphere to retain rotation invariance… Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
61
3D Zernike Descriptors Basis functions in the unit sphere:
SH on the sphere Function of the radius … and a radial function other than sampling. Since the radial function depends only on the radius, the rotation invariance is preserved. Rotation invariant! Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
62
Object function, e.g. voxel grid
3D Zernike Descriptors Basis functions in the unit sphere: 3D Zernike Moments [Canterakis ‘99]: … and a radial function other than sampling. Since the radial function depends only on the radius, the rotation invariance is preserved. Object function, e.g. voxel grid Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
63
3D Zernike Descriptors 3D Zernike Descriptors:
Amplitudes of the Zernike decomposition Rotation invariant And the zernike descriptors are defined similarly to the SH amplitudes: we gather the zernike moments with upper index from –l to l for a given lower indices n and l. Due to the properties of SH, the norms of these vectors will be rotation invariant. Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
64
3D Zernike Descriptors Basis functions in the unit sphere:
SH on the sphere We use SH on the sphere to retain rotation invariance… Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
65
3D Zernike Descriptors Basis functions in the unit sphere:
SH on the sphere Function of the radius … and a radial function other than sampling. Since the radial function depends only on the radius, the rotation invariance is preserved. Rotation invariant! Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
66
Object function, e.g. voxel grid
3D Zernike Descriptors Basis functions in the unit sphere: 3D Zernike Moments [Canterakis ‘99]: … and a radial function other than sampling. Since the radial function depends only on the radius, the rotation invariance is preserved. Object function, e.g. voxel grid Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
67
3D Zernike Descriptors 3D Zernike Descriptors:
Amplitudes of the Zernike decomposition Rotation invariant And the zernike descriptors are defined similarly to the SH amplitudes: we gather the zernike moments with upper index from –l to l for a given lower indices n and l. Due to the properties of SH, the norms of these vectors will be rotation invariant. Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
68
3D Zernike Descriptors For N=22 : 155 floats as search key
Timings (1.8 GHz Pentium): Voxelization: 0.3 – 10.0 sec / object Computation: 0.2 sec / object Retrieval (1814 objects): 0.3 sec Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
69
3D Zernike Descriptors Retrieval performance [Novotni & Klein ’04]
Slightly better than [Funkhouser et al. ’02] Object class dependent performance! Class dependent coefficient importance! Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
70
3D Zernike Descriptors Faces Chairs Airplanes Importance Coeff No.
Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
71
3D Zernike Descriptors 3D Zernike functions [Canterakis ‘99]
are polynomials such that are orthonormal within the unit ball Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
72
3D Zernike Descriptors 3D Zernike functions [Canterakis ‘99]
are polynomials such that are orthonormal within the unit ball 3D Zernike Moments: The 3D Zernike moments are defined as inner products of the object function with the elements of the basis. Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
73
3D Zernike Descriptors 3D Zernike Descriptors:
Amplitudes of the Zernike decomposition Rotation invariant And the zernike descriptors are defined similarly to the SH amplitudes: we gather the zernike moments with upper index from –l to l for a given lower indices n and l. Due to the properties of SH, the norms of these vectors will be rotation invariant. Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
74
3D Zernike Descriptors For N=20 : 121 floats as search key
Timings (1.8 GHz Pentium): Voxelization: 0.3 – 10.0 sec / object Computation: 0.2 sec / object Retrieval (1814 objects): 0.3 sec Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
75
3D Zernike Descriptors Retrieval performance [Novotni & Klein ’04]
Slightly better than [Funkhouser et al. ’02] Object class dependent performance! Class dependent coefficient importance! Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
76
Correspondence Matching
Matching should be: Independent of topology Robust Suitable for partial matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
77
Correspondence Matching
Local description Local shape histograms Not rotation invariant Rotation invariance Amplitudes of the Fourier Transform Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
78
3D Zernike Descriptors 155 floats as search key
Retrieval (1814 objects): 0.3 sec Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
79
Correspondence Matching
Stuff to remember: Salient points simplify the problem Smooth mapping iff consistent constellations Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
80
Correspondence Matching
Stuff to remember: Salient points simplify the problem Volumetric On the surface Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
81
Correspondence Matching
Stuff to remember: Salient points simplify the problem Smooth mapping iff consistent constellations Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
82
Correspondence Matching
New avenues: Local Descriptions for retrieval Retrieval by part selection & recognition Retrieval from large scenes Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
83
Correspondence Matching
New avenues: Local Descriptions for retrieval Online Learning for local descriptions Adopting pattern recognition methods Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
84
Correspondence Matching
New avenues: Local Descriptions for retrieval Online Learning for local descriptions Dense matching from salient points Morphing, registration, object statistics Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
85
Our Aim #2 Direct matching Alignment Marcin Novotni Reinhard Klein
University of Bonn Computer Graphics Group
86
Correspondence Matching
Scale space extremes [Lindeberg ‘94] Blob detection by localizing extremes of Laplacian … … in scale and space Size of the blob Position of the blob Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
87
Correspondence Matching
Maxima of Laplacian over scales Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
88
Correspondence Matching
Spatial maxima Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.