Download presentation
Presentation is loading. Please wait.
Published byLaurence Patterson Modified over 9 years ago
1
meiling chensignals & systems1 Lecture #06 Laplace Transform
2
meiling chensignals & systems2 Eigenfunction A
3
meiling chensignals & systems3
4
meiling chensignals & systems4 LTI system h(t) is the impulse response of the LTI system According to the convolution: We define that
5
meiling chensignals & systems5 We identify as an eigenfunction of the LTI system and H(s) as the corresponding eigenvalue. In which s is a complex frequency Is the Fourier transform of
6
meiling chensignals & systems6 Laplace transform Inverse Laplace transform
7
meiling chensignals & systems7 Unilateral Laplace transform for causal system
8
meiling chensignals & systems8 Laplace transform properties
9
meiling chensignals & systems9 Time convolution
10
meiling chensignals & systems10 Initial Value Theorem Initial-Value Theorem If is continuous at and may different and if is not impulse function or derivative of impulse function, then Example 1
11
meiling chensignals & systems11 Final Value Theorem Final-Value Theorem If and are Laplace transformable, if exists and if is analytic on the imaginary axis and in right half of the s-plane, then 1.No any pole on the imaginary axis or in right half of s-plane. 2.System is stable.
12
meiling chensignals & systems12 Example 2 Example 3 not exist
13
meiling chensignals & systems13 Remark 1 Remark 2 If include impulse function at. Example 4 Example 5
14
meiling chensignals & systems14 Inverse Laplace transform F(s) is a strictly proper rational function Degree of denominator Case I simple root where
15
meiling chensignals & systems15 Example 6 or
16
meiling chensignals & systems16 Inverse Laplace transform Case II complex root let
17
meiling chensignals & systems17 Example 7
18
meiling chensignals & systems18 Inverse Laplace transform Case III repeated root
19
meiling chensignals & systems19 Example 8
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.