Download presentation
Presentation is loading. Please wait.
Published byClaude Cameron Modified over 9 years ago
1
ECE/CS 352 Digital System Fundamentals© T. Kaminski & C. Kime 1 ECE/CS 352 Digital Systems Fundamentals Spring 2001 Chapter 1 Tom Kaminski & Charles R. Kime
2
ECE/CS 352 Digital System Fundamentals Chapter 1 2 Digital System
3
ECE/CS 352 Digital System Fundamentals Chapter 1 3 Types of Systems
4
ECE/CS 352 Digital System Fundamentals Chapter 1 4 Digital System Example:
5
ECE/CS 352 Digital System Fundamentals Chapter 1 5 A Digital Computer Example Synchronous or Asynchronous? Inputs: Keyboard, mouse, modem, microphone Outputs: CRT, LCD, modem, speakers
6
ECE/CS 352 Digital System Fundamentals Chapter 1 6 Signals
7
ECE/CS 352 Digital System Fundamentals Chapter 1 7 Physical Signal Example - Voltage Threshold Region
8
ECE/CS 352 Digital System Fundamentals Chapter 1 8 Threshold in the News! Punched = 1 Not punched = 0 What about the rest?
9
ECE/CS 352 Digital System Fundamentals Chapter 1 9 What are other physical signals represented by 1 and 0? CPU Voltage Disk CD Dynamic RAM Other Physical Signals Magnetic Field Direction Surface Pits/Light Electrical Charge
10
ECE/CS 352 Digital System Fundamentals Chapter 1 10 Signal Examples Over Time
11
ECE/CS 352 Digital System Fundamentals Chapter 1 11 Number Systems
12
ECE/CS 352 Digital System Fundamentals Chapter 1 12 Powers of Ten
13
ECE/CS 352 Digital System Fundamentals Chapter 1 13 Positive Powers of 2
14
ECE/CS 352 Digital System Fundamentals Chapter 1 14 Important Powers of 2
15
ECE/CS 352 Digital System Fundamentals Chapter 1 15 Number Digits Decimal number digits are 0 through 9 Binary number digits are 0 through 1 Base (radix) r number digits are 0 through r - 1
16
ECE/CS 352 Digital System Fundamentals Chapter 1 16 To convert to decimal, use decimal arithmetic to sum the weighted powers of two: 11010 2 => Converting Binary to Decimal 1 x 2 4 = 16 + 1 x 2 3 = 8 + 0 x 2 2 = 0 + 1 x 2 1 = 2 + 0 x 2 0 = 0 = 26 10 __________
17
ECE/CS 352 Digital System Fundamentals Chapter 1 17 Method 1 (Method 2, Repeated Division Later) Subtract the largest power of 2 that gives a positive result and record the power. Repeat subtracting from the prior result until the remainder is zero. Place 1’s in the positions in the binary result corresponding to the powers recorded; in all other positions place 0’s. Example: 625 10 Result from the listed powers: 1001110001 2 Converting Decimal to Binary – 29 29 = 625 – 512 = 113 => 9 113 – 26 26 = – 64 = 49 => 6 49 – 25 25 = – 32 = 17 => 5 17 1 – 24 24 = – 16 = 1 => 4 – 20 20 = 1 – 1 = 0 0
18
ECE/CS 352 Digital System Fundamentals Chapter 1 18 Commonly Occurring Bases
19
ECE/CS 352 Digital System Fundamentals Chapter 1 19 Numbers in Different Bases
20
ECE/CS 352 Digital System Fundamentals Chapter 1 20 General Base Conversion
21
ECE/CS 352 Digital System Fundamentals Chapter 1 21 Radix 10 Example a 3 *r 3 = 2 * 1000 = 2000 a -2 *r -2 = 7 * 0 01 = 0 07 a 2 *r 2 = 3 * 100 = 300 a 0 *r 0 = 5 * 1 = 5 a -1 *r -1 = 6 * 0 1 = 0 6 a 1 *r 1 = 4 * 10 = 40 Sum => 2,345 67 2,345 67 10 => a 3 a 2 a 1 a 0 a - 1 a - 2 = 2*1000 + 3*100 +4*10 + 5 + 6*(1/10) + 7*(1/100) (Integer part) + (Fraction part) TermActual Values Product
22
ECE/CS 352 Digital System Fundamentals Chapter 1 22 Conversion Between Bases
23
ECE/CS 352 Digital System Fundamentals Chapter 1 23 Conversion Details
24
ECE/CS 352 Digital System Fundamentals Chapter 1 24 Convert 46.6875 10 To Base 2
25
ECE/CS 352 Digital System Fundamentals Chapter 1 25 Convert Integer 46 To Base 2 Step 146 / 2 = 23 remainder = 0 Step 223 / 2 = 11 remainder = 1 Step 311 / 2 = 5 remainder = 1 Step 4 5 / 2 = 2 remainder = 1 Step 5 2 / 2 = 1 remainder = 0 Step 6 1 / 2 = 0 remainder = 1 Result 46 10 = 23 => 101110 2
26
ECE/CS 352 Digital System Fundamentals Chapter 1 26 Convert Fraction 0.6875 10 to Base 2 Step 10.6875 * 2 = 1.3750 integer = 1 Step 20.3750 * 2 = 0.7500 integer = 0 Step 30.7500 * 2 = 1.5000 integer = 1 Step 40.5000 * 2 = 1.0000 integer = 1 Step 50.0000 * 2 = 0.0000 integer = 0 Result 0.6875 10 => 0.10110 2
27
ECE/CS 352 Digital System Fundamentals Chapter 1 27 Join Integer and Fraction
28
ECE/CS 352 Digital System Fundamentals Chapter 1 28 Checking the Conversion
29
ECE/CS 352 Digital System Fundamentals Chapter 1 29 Octal to Binary and Back
30
ECE/CS 352 Digital System Fundamentals Chapter 1 30 Octal to Hexadecimal via Binary
31
ECE/CS 352 Digital System Fundamentals Chapter 1 31 A Final Conversion Note
32
ECE/CS 352 Digital System Fundamentals Chapter 1 32 Binary Numbers and Coding
33
ECE/CS 352 Digital System Fundamentals Chapter 1 33 Enumerating elements
34
ECE/CS 352 Digital System Fundamentals Chapter 1 34 Example: Radix 2, 3 digits
35
ECE/CS 352 Digital System Fundamentals Chapter 1 35 Representing Numeric Information
36
ECE/CS 352 Digital System Fundamentals Chapter 1 36 Binary Coding
37
ECE/CS 352 Digital System Fundamentals Chapter 1 37 Number of Bits Required
38
ECE/CS 352 Digital System Fundamentals Chapter 1 38 Min. and Max. Digits Required
39
ECE/CS 352 Digital System Fundamentals Chapter 1 39 Binary Codes for Decimal Digits
40
ECE/CS 352 Digital System Fundamentals Chapter 1 40 Binary Coded Decimal (BCD)
41
ECE/CS 352 Digital System Fundamentals Chapter 1 41 Other Decimal Codes
42
ECE/CS 352 Digital System Fundamentals Chapter 1 42 Warning: Conversion or Coding?
43
ECE/CS 352 Digital System Fundamentals Chapter 1 43 Binary Addition
44
ECE/CS 352 Digital System Fundamentals Chapter 1 44 Extending this to multiple digits: Carries 0 0 Augend 01100 10110 Addend +10001 +10111 Sum Note: The underlined “0” is a Carry-In to the least digit. Binary Addition (Extended) 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 1
45
ECE/CS 352 Digital System Fundamentals Chapter 1 45 Given two binary digits (X,Y), a borrow in (Z) we get the following difference (S) and borrow (B): Borrow in (Z) of 0: Borrow in (Z) of 1: Binary Subtraction Z 1 1 1 1 X 0 0 1 1 - Y -0 -0 BS 11 1 0 0 1 Z 0 0 0 0 X 0 0 1 1 - Y -0 -0 BS 0 1 0 1 0
46
ECE/CS 352 Digital System Fundamentals Chapter 1 46 Extending this to multiple digits: Borrows 0 0 Minuend 10110 10110 Subtrahend - 10010 - 10011 Difference Note: If the Subtrahend is larger than the Minuend, interchange and append a – to the result. The underlined “0” is a Borrow-In to the least digit. Binary Subtraction (Extended) 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0
47
ECE/CS 352 Digital System Fundamentals Chapter 1 47 Binary Multiplication
48
ECE/CS 352 Digital System Fundamentals Chapter 1 48 BCD Arithmetic
49
ECE/CS 352 Digital System Fundamentals Chapter 1 49 BCD Addition Example Add 1897 BCD to 2905 BCD 0001 1000 1001 0111 + 0010 1001 0000 0101 0 1100 101010010 0100 + 0110 1 + 0000 0010 0000 1 1000 0100 1
50
ECE/CS 352 Digital System Fundamentals Chapter 1 50 Error-Detection Codes
51
ECE/CS 352 Digital System Fundamentals Chapter 1 51 3-Bit Parity Code Example
52
ECE/CS 352 Digital System Fundamentals Chapter 1 52 ASCII Character Codes
53
ECE/CS 352 Digital System Fundamentals Chapter 1 53 ASCII Properties
54
ECE/CS 352 Digital System Fundamentals Chapter 1 54 Other Character Codes
55
ECE/CS 352 Digital System Fundamentals Chapter 1 55 Other Character Codes UNICODE extends ASCII to 65,536 universal characters codes For encoding characters in world languages Available in many modern applications 2 byte (16-bit) code words See Supplement in Chapter 1 on Companion Website http://www.prenhall.com/mano if you are interestedhttp://www.prenhall.com/mano
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.