Download presentation
Presentation is loading. Please wait.
Published byLeonard Wood Modified over 8 years ago
1
ENS MHD induction & dynamo LYON Laboratoire de Physique
Ecole Normale supérieure Lyon (France) Jean-François Pinton
2
Collaboration with Philippe Odier, Mickael Bourgoin, Romain Volk
VKG : Stanislas Kripchenko, Petr Frick VKS : François Daviaud, Arnaud Chiffaudel, Stephan Fauve, François Petrelis, Louis Marié Numerics : Yanick Ricard, Yannick Ponty Hélène Politano
3
ENS LYON Motivations and approach:
Non-linear physics, fluid turbulence Induction mechanisms high Rm, low Pm Dynamo - `non - analytical’ dynamos? - bifuraction in the presence of noise - saturation and dynamical regime Dynamo fields are self-tailored, and we wish we could control the flow !
4
Question addressed : B-measurement In situ 3D flow
Liquid metal : Ga, Na Mean induction ? Fluctuations ?
5
Induction in mhd flows B-eq. only : field is too small to modify imposed u B0 imposed by external coils / currents Boundary conditions : flow + vessel + outside
6
Equations & parameters
Liquid Gallium / Sodium Turbulent flows Weak applied field Strong, non-linear induction
7
Measurement of induction in VK flows Gallium at ENS-Lyon Sodium at CEA-Cadarache
M. Bourgoin, et al., Phys. Fluids, 14 (9), 3046, (2001). L. Marie et al., Magnetohydrodynamics, 38, 163, (2002). F. Pétrélis et al., Phys. Rev. Lett., 90(17), , (2003). M. Bourgoin et al., Magnetohydrodynamics, in press, (2004).
8
Von Karman flows B0 B0// Motor 2 Motor 1 H=2R 3D Hall probe Pressure
Power Velocity feed-back H=2R R B0 B0// 3D Hall probe Pressure Motor 1 Motor 2 Thermocouple
9
VKS1 experiment at CEA-Cadarache
10
von Karman counter-2D (differential rotation)
W R H=2R poloidal Toroidal
11
Omega effect W Twisting of mag field lines by shear B1q induit
H=2R Twisting of mag field lines by shear B1q induit saturation linear
12
Von Karman 1D (helicity)
W H=2R W=0 Hz R Vitesse azimutale Vitesse poloïdale x y z z (m) mesures LDV (L. Marié, CEA) x (m) x (m)
13
« alpha » effect W=0 Hz VKG W BIz Rm Na, Cadarache Ga, Lyon saturation
H=2R W=0 Hz R VKG Na, Cadarache Ga, Lyon saturation quadratic BIz quadratic Rm
14
« alpha » effect W=0 Hz W Parker’s stretch and twist mechanism R H=2R
15
Turbulent fluctuations
histogram time (s) Bind,z (G) applied B0 mean induced bz Bz (G)
16
Turbulent fluctuations
10 1 2 4 - 1 - 11/3 f (Hz) b² ~ Ω Ω/10 br bθ bz 3 particular regions
17
Mean induction: an iterative approach (assuming stationarity) real boundary condition
An iterative study of time independent induction effects in mhd M. Bourgoin, P. Odier, J.-F. Pinton and Y. Ricard, Physics of Fluids, in press (2004).
18
Iterative approach Induction in the presence of an applied field avec
+ C.L.
19
Solving for B, I, F CL Neumann : (CL insulating)
20
Ex.1: w-effect in VK Potentiel électrique
21
Ex.1: w-effect in VK linéaire saturation
22
Ex.2: a-effect in VK R
23
Ex.2: a-effect in VK
24
Ex.2: a-effect in VK
25
Ex.3: boundary effect in VK
26
Turbulent fluctuations : a mixed LES - DNS scheme periodic boundary condition
Simulation of induction at low magnetic Prandtl number Y. Ponty, H. Politano and J.-F. Pinton:, Physal Review Letters, in press, (2004).
27
Turbulence : coupled LES-DNS
Include turbulence, but : viscous dissipative scale : h = L/Re3/4 magnetic ohmic scale : hB = L/Rm3/4 PSD B u 1/L 1/hB 1/h DNS LES
28
Taylor-Green vortex flow
pseudo spectral code 1283 Pm = 0.001, Rm=7, Rl=100 Chollet-Lesieur cutoff h(k,t) ≈ (a + b(k/Kc)8)sqrt(E(Kc,t)/Kc)
29
TG, local induction
30
TG, global mode VKS exp. TG simul Local
31
TG, global mode VKS exp. TG simul B-energy
32
In progress VKS dynamo Turbulence & induction Earth dynamo
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.