Download presentation
Presentation is loading. Please wait.
Published byProsper Shaw Modified over 9 years ago
1
The mathematical properties of phrase structure trees
Structural Relations The mathematical properties of phrase structure trees
2
Important!! This is the most mathematical and technical topic we will cover. Even if you have trouble with the formal definitions. Try to understand the INTUITIVE idea behind them. Don’t get lost in the details of the formalism.
3
Structural Relations Structural relations: the formal relationships between items of a tree Why should we care? We want to be able to talk about specific relationships in terms of structures. Structural relationships are actually very simple! Don’t let the formalism scare you!
4
Some basic terms M N O D E F G H J Root node Branches
Non-terminal nodes Labels: M,N,O,D,E,F,G,H,J Terminal nodes Node: Any point with a label
5
Dominance Intuitively: this is containment. If a node contains another, then it dominates it: A B C D E F G [A B C [D E F G]] contained inside [A ] A dominates B,C,D,E,F,G D dominates E,F,G
6
Dominance Other intuitive definitions: “On top of”,
“Can follow a branch downwards to”.
7
Dominance A slightly more formal definition:
Dominance: Node A dominates node B if and only if A is higher up in the tree than B and if you can trace a line from A to B going only downwards.
8
Immediate Dominance Node A immediately dominates node B if there is no intervening node G which is dominated by A, but dominates B (in other words, A is the first node that dominates B) A B C D E F G A dominates B,C,D,E,F,G but A immediately dominates only B,C,D
9
Properties of domination
x ≤ x (every linguistic element dominates itself) if x ≤ y ≤ z then x ≤ z (the dominance relation is transitive) if x ≤ y ≤ x then, x = y (the dominance relation is unidirectional) if x ≤ z and y ≤ z then either x ≤ y or y ≤ x (or both if x =y =z) (multiple mothers are ruled out) A B C * A B C
10
Exhaustive Domination
Node A exhaustively dominates a SET of nodes {B,C,…,D}, provided it immediately dominate all the members of the set (so that there is no member of the set that is not dominated by A) AND there is no node G immediately dominated by A that is not a member of the set.
11
Exhaustive Domination
A G B C D E H I F A exhaustively dominates the set {B,C,D,E} A does NOT exhaustively dominate the set {B,C,D} A does NOT exhaustively dominate the set {B,C,D, E, H}
12
A formal definition of Constituency
Constituent: A set of nodes exhaustively dominated by a single node. A G B C D E H I F {E, H} are NOT a constituent
13
Constituent vs Constituent of
Constituent of does NOT mean the same thing as constituent. Essentially constituent of is the opposite of domination. A dominates B, then we say B is a constituent of A. immediate constituent of is the opposite of immediate domination.
14
Some Informal Terms Mother: the node that immediately dominates another. Daughter: the node that is immediately dominated by another (is an immediate constituent of another). Sisters: two nodes that share the same mother.
15
Root and Terminal Nodes
Root node: A node with no mother Terminal node: A node with no daughters Root Node S NP VP D N V the platypus laughed Terminal Nodes
16
Precedence Precedence: Node A precedes node B if and only if
(1) A is to the left of B (2) and neither A dominates B nor B dominates A (3) and every node dominating A either precedes B or dominates B The intuitive part why do we need clauses (2) and (3)?
17
Breaking down the definition of precedence
(2) and neither A dominates B nor B dominates A Is the ball to the left or right of the box? Neither! You can’t precede or follow something that dominates (contains) you or you dominate (contain).
18
Breaking down the definition of precedence
(3) and every node dominating A either precedes B or dominates B. S NP VP D N the clown V kissed NP D N the donkey Does kiss precede clown? Obviously not! “and every node dominating kissed either precedes clown or dominates clown” Not true
19
No Crossing Branches Constraint
If one node X precedes another node Y then X and all nodes dominated by X must precede Y and all nodes dominated by Y. * M N O P R Q S
20
Properties of precedence
if xy, then NOT(yx) (You can’t both precede and follow) if x y z, then x z (precedence is transitive) if xy or y x, then NOT(x≤y) and NOT (y≤x) (precedence and dominance are mutually exclusive) there is a mistake in the textbook on this one. x y iff for all terminals u, v, x ≤ u and y ≤ v jointly imply u v (don’t cross lines) A B C
21
Immediate Precedence Immediate Precedence:
A immediately precedes B if there is no node G which follows A but precedes B. A B G A G B
22
C-command Intuitively: The relationship between a node and its sister, and all the daughters of its sister A c-commands C,D,E,F,G,H M A C D E F G H Note: D does NOT c–command A
23
C-command Node A c-commands node B if every branching node dominating A also dominates B, and A does not itself dominate B. Sisterhood you can’t command something you dominate
24
Symmetric C-command A symmetrically c-commands B, if A c-commands B AND B c-commands A SAME THING AS SISTERHOOD M A B D E F G H A & B symmetrically c-command one another A does NOT symmetrically c-command D
25
Asymmetric C-command A asymmetrically c-commands B, if A c-commands B but B does NOT c-command A. (intuitively -- A is B’s aunt) M A C B E F G H
26
Grammatical Relations
Subject: NP daughter of S Object: NP daughter of VP Object of a Preposition: NP daughter of PP
27
Summary Grammatical Relations: relationship between nodes.
Dominance (=containment) immediate dominance (=motherhood) exhaustive dominance (=constituent) Precedence (=to the left) immediate precedence (=adjacent & to the left)
28
Summary C-command: Sisters & nieces Grammatical Relations
Symmetric C-command: sisters Asymmetric C-command: Aunt asymm. c-commands nieces Grammatical Relations Subject: NP daughter of S Object: NP daughter of VP Object of P: NP daughter of PP
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.