Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture 32: MON 09 NOV Review Session A : Midterm 3 Physics 2113 Jonathan Dowling.

Similar presentations


Presentation on theme: "Lecture 32: MON 09 NOV Review Session A : Midterm 3 Physics 2113 Jonathan Dowling."— Presentation transcript:

1 Lecture 32: MON 09 NOV Review Session A : Midterm 3 Physics 2113 Jonathan Dowling

2 EXAM 03: 6PM WED 11 NOV in Cox Auditorium The exam will cover: Ch.27.4 through Ch.30 The exam will be based on: HW08–11 The formula sheet and practice exams are here: http://www.phys.lsu.edu/~jdowling/PHYS21133-FA15/lectures/index.html Note this link also includes tutorial videos on the various right hand rules. You can see examples of even older exam IIIs here: http://www.phys.lsu.edu/faculty/gonzalez/Teaching/Phys2102/Phys2102OldTests/

3 Problem: 27.P.046. [406629] In an RC series circuit, E = 17.0 V, R = 1.50 M, and C = 1.80 µF. (a) Calculate the time constant. (b) Find the maximum charge that will appear on the capacitor during charging. (c) How long does it take for the charge to build up to 16.0 µC?

4

5 Magnetic Forces and Torques L v F

6 C C Top view Side view (28-13)

7 (28-14)

8 Ch 28: Checkpoints and Questions

9 28.3: Finding the Magnetic Force on a Particle: Always assume particle is POSITIVELY charged to work Out direction then flip your thumb over if it is NEGATIVE.

10

11

12 The left face is at a lower electric potential (minus charges) and the right face is at a higher electric potential (plus charges). ICPP

13 Circular Motion: Since magnetic force is perpendicular to motion, the movement of charges is circular. B into blackboard. v F In general, path is a helix (component of v parallel to field is unchanged). In general, path is a helix (component of v parallel to field is unchanged). r

14 .. electron C r Radius of Circlcular Orbit Angular Frequency: Independent of v Angular Frequency: Independent of v Period of Orbit: Independent of v Period of Orbit: Independent of v Orbital Frequency: Independent of v Orbital Frequency: Independent of v

15

16 B into blackboard. v F r Which has the longer period T? Since v is the same and r p >> r e the proton has the longer period T. It has to travel around a bigger circle but at the same speed.

17 ICPP Two charged ions A and B traveling with a constant velocity v enter a box in which there is a uniform magnetic field directed out of the page. The subsequent paths are as shown. What can you conclude? RHR says (a) is false. Same charge q, speed v, and same B for both masses. So: ion with larger mass/charge ratio (m/q) moves in circle of larger radius. But that’s all we know! Don’t know m or q separately. (a) Both ions are negatively charged. (b) Ion A has a larger mass than B. (c) Ion A has a larger charge than B. (d) None of the above. v v A B

18 Problem: 28.P.024. [566302] In the figure below, a charged particle moves into a region of uniform magnetic field, goes through half a circle, and then exits that region. The particle is either a proton or an electron (you must decide which). It spends 160 ns in the region. (a) What is the magnitude of B? (b) If the particle is sent back through the magnetic field (along the same initial path) but with 3.00 times its previous kinetic energy, how much time does it spend in the field during this trip?

19

20

21

22 Magnetic Force on a Wire. L

23

24 i 28.8.2. A portion of a loop of wire passes between the poles of a magnet as shown. We are viewing the circuit from above. When the switch is closed and a current passes through the circuit, what is the movement, if any, of the wire between the poles of the magnet? a) The wire moves toward the north pole of the magnet. b) The wire moves toward the south pole of the magnet. c) The wire moves upward (toward us). d) The wire moves downward (away from us into board). e) The wire doesn ’ t move.

25 Example By symmetry, F 2 will only have a vertical component, Notice that the force is the same as that for a straight wire of length R, LLRR and this would be true no matter what the shape of the central segment!. Wire with current i. Magnetic field out of page. What is net force on wire?

26 i

27 i SP28-06 ICPP: Find Direction of B

28 Example 4: The Rail Gun Conducting projectile of length 2cm, mass 10g carries constant current 100A between two rails. Magnetic field B = 100T points outward. Assuming the projectile starts from rest at t = 0, what is its speed after a time t = 1s? Conducting projectile of length 2cm, mass 10g carries constant current 100A between two rails. Magnetic field B = 100T points outward. Assuming the projectile starts from rest at t = 0, what is its speed after a time t = 1s? B I L Force on projectile: F= iLB (from F = iL x B) Acceleration: a = F/m = iLB/m (from F = ma) v = at = iLBt/m (from v = v 0 + at) = (100A)(0.02m)(100T)(1s)/(0.01kg) = 2000m/s = 4,473mph = MACH 8! Force on projectile: F= iLB (from F = iL x B) Acceleration: a = F/m = iLB/m (from F = ma) v = at = iLBt/m (from v = v 0 + at) = (100A)(0.02m)(100T)(1s)/(0.01kg) = 2000m/s = 4,473mph = MACH 8! projectile rails

29 Highest Torque:  = ±90° sin  = ±1 Lowest Torque:  = 0° & 180° sin  = 0 B  = 180° –cos  = +1  = 0° –cos  = –1

30 Torque on a Current Loop: Principle behind electric motors. Net force on current loop = 0 For a coil with N turns, τ = N I A B sin , where A is the area of coil Rectangular coil: A=ab, current = i But: Net torque is NOT zero!

31 Magnetic Dipole Moment N = number of turns in coil A = area of coil. We just showed: τ = NiABsinθ Right hand rule: curl fingers in direction of current; thumb points along  Define: magnetic dipole moment  As in the case of electric dipoles, magnetic dipoles tend to align with the magnetic field.

32 Electric vs. Magnetic Dipoles -Q  QE +Q p=Qa

33 τ is biggest when B is at right angles to μ 1 and 3 are “downhill”. 2 and 4 are “uphill”. U 1 = U 4 > U 2 = U 3

34

35

36 Right Hand Rule: Given Current i Find Magnetic Field B

37 Checkpoints/Questions Magnetic field? Force on each wire due to currents in the other wires? Ampere ’ s Law: Find Magnitude of ∫B∙ds?

38 Superposition: ICPP Magnetic fields (like electric fields) can be “superimposed” -- just do a vector sum of B from different sources The figure shows four wires located at the 4 corners of a square. They carry equal currents in directions indicated What is the direction of B at the center of the square? B I-OUT I-IN

39 The current in wires A,B,D is out of the page, current in C is into the page. Each wire produces a circular field line going through P, and the direction of the magnetic field for each is given by the right hand rule. So, the circles centers in A,B,D are counterclockwise, the circle centered at C is clockwise. When you draw the arrows at the point P, the fields from B and C are pointing in the same direction (up and left). Right Hand Rule: Given Current i Find Magnetic Field B


Download ppt "Lecture 32: MON 09 NOV Review Session A : Midterm 3 Physics 2113 Jonathan Dowling."

Similar presentations


Ads by Google