Presentation is loading. Please wait.

Presentation is loading. Please wait.

EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter

Similar presentations


Presentation on theme: "EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter"— Presentation transcript:

1 EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc

2 ©rlc L27-28Apr20112 Fully biased n-MOS capacitor 0 y L VGVG V sub =V B E Ox,x > 0 Acceptors Depl Reg e - e - e - e - e - e - n+ VSVS VDVD p-substrate Channel if V G > V T

3 ©rlc L27-28Apr20113 MOS energy bands at Si surface for n-channel Fig 8.10**

4 ©rlc L27-28Apr20114 Computing the D.R. W and Q at O.S.I. ExEx E max x

5 ©rlc L27-28Apr20115 Q’ d,max and x d,max for biased MOS capacitor Fig 8.11** x d,max (  m)

6 ©rlc L27-28Apr20116 Fully biased n- channel V T calc

7 ©rlc L27-28Apr20117 n-channel V T for V C = V B = 0 Fig 10.20*

8 ©rlc L27-28Apr20118 Fully biased p- channel V T calc

9 ©rlc L27-28Apr20119 p-channel V T for V C = V B = 0 Fig 10.21*

10 ©rlc L27-28Apr201110 n-channel enhancement MOSFET in ohmic region 0< V T < V G V B < 0 E Ox,x > 0 Acceptors Depl Reg V S = 0 0< V D < V DS,sat e - e - e - e - e - n+ p-substrate Channel

11 ©rlc L27-28Apr201111 Conductance of inverted channel Q’ n = - C’ Ox (V GC -V T ) n’ s = C’ Ox (V GC -V T )/q, (# inv elect/cm 2 ) The conductivity  n = (n’ s /t) q  n G =  n (Wt/L) = n’ s q  n (W/L) = 1/R, so I = V/R = dV/dR, dR = dL/(n’ s q  n W)

12 ©rlc L27-28Apr201112 Basic I-V relation for MOS channel

13 ©rlc L27-28Apr201113 I-V relation for n-MOS (ohmic reg) IDID V DS V DS,sat I D,sat ohmic non-physical saturated

14 ©rlc L27-28Apr201114 Universal drain characteristic 9I D1 IDID 4I D1 I D1 V GS =V T +1V V GS =V T +2V V GS =V T +3V V DS saturated, V DS >V GS -V T ohmic

15 ©rlc L27-28Apr201115 Characterizing the n-ch MOSFET VDVD IDID D S G B V GS VTVT

16 ©rlc L27-28Apr201116 Substrate bias effect on V T (body-effect)

17 ©rlc L27-28Apr201117 Body effect data Fig 9.9**

18 ©rlc L27-28Apr201118 Low field ohmic characteristics

19 ©rlc L27-28Apr201119 MOSFET circuit parameters

20 ©rlc L27-28Apr201120 MOSFET circuit parameters (cont)

21 ©rlc L27-28Apr201121 Fig 10.51* MOSFET equivalent circuit elements

22 ©rlc L27-28Apr201122 MOS small-signal equivalent circuit Fig 10.52*

23 ©rlc L27-28Apr201123 MOS channel- length modulation Fig 11.5*

24 ©rlc L27-28Apr201124 Analysis of channel length modulation

25 ©rlc L27-28Apr201125 Channel length mod- ulated drain char Fig 11.6*

26 ©rlc L27-28Apr201126 e - e - e - e - e - + + + + + + + + + + + + Implanted n-channel enhance-ment MOSFET (ohmic region) 0< V T < V G V B < 0 E Ox,x > 0 Acceptors Depl Reg V S = 0 0< V D < V DS,sat n+ p-substrate Channel e- channel ele + implant ion

27 ©rlc L27-28Apr201127 Si & SiO 2 AlAl Si 3 N 4 Si Si Al & SiO 2 Si 3 N 4 RangeRange RPRP Ion implantation*

28 ©rlc L27-28Apr201128 “Dotted box” approx**

29 ©rlc L27-28Apr201129 Calculating x i and  V T

30 ©rlc L27-28Apr201130 If x i ~ x d,max

31 ©rlc L27-28Apr201131 Calculating V T

32 ©rlc L27-28Apr201132 Implanted V T Vt per Eq. 9.1.23 in M&K for a MOSFET with an 87-nm-thick gate oxide, Q ff /q = 10 11 cm -2, N’ = 3.5 X 10 11 cm -2, and N a = 2 X 10 15 cm -3. Both V S and V B = Figure 9.8 (p. 441)

33 ©rlc L27-28Apr201133 Mobilities**

34 ©rlc L27-28Apr201134 Substrate bias effect on V T (body-effect)

35 ©rlc L27-28Apr2011 Body effect data Fig 9.9** 35

36 ©rlc L27-28Apr201136 M&K Fig. 9.9 (Eq. 9.1.23)

37 ©rlc L27-28Apr201137 Subthreshold conduction Below O.S.I., when the total band-bending < 2|  p |, the weakly inverted channel conducts by diffusion like a BJT. Since V GS >V DS, and below OSI, then N a >n S >n D, and electr diffuse S --> D Electron concentration at Source Concentration gradient driving diffusion

38 ©rlc L27-28Apr201138 M&K Fig.9.10 (p.443) Band diagram along the channel region of an n-channel MOSFET under bias, indicating that the barrier qΦ B at the source depends on the gate voltage.

39 ©rlc L27-28Apr201139 M&K Fig. 9.11 (p.444) Measured subthreshold characteristics of an MOS transistor with a 1.2 μm channel length. The inverse slope of the straight-line portion of this semilogarithmic plot is called the drain-current subthreshold slope S (measured in mV/decade of drain current).

40 ©rlc L27-28Apr201140 Subthreshold current data Figure 11.4* Figure 10.1**

41 ©rlc L27-28Apr201141 Mobility variation due to E depl Figures 11.7,8,9*

42 ©rlc L27-28Apr201142 Velocity saturation effects Figure 11.10*

43 ©rlc L27-28Apr201143 References * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986


Download ppt "EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter"

Similar presentations


Ads by Google