Download presentation
Presentation is loading. Please wait.
Published byCharleen Wade Modified over 9 years ago
1
1 Trees CLRS: chapter 12
2
2 A hierarchical combinatorial structure הגדרה רקורסיבית: 1. צומת בודד. זהו גם שורש העץ. 2. אם n הוא צומת ו T 1 ….T K הינם עצים, ניתן לבנות עץ חדש שבו n השורש ו T 1 ….T K הינם “תתי עצים”. T1T1 TKTK n T1T1 TKTK n... מושגים:
3
3 book c1c1 c2c2 c3c3 s 1.1 s 1.2 s 1.3 s 2.1 s 2.2 s 3.1 book c1 s1.1 s1.2 s1.3 c2 s2.1 s2.2 c3 s3.1 מושגים: book - הורה/Parent (אבא) של c1, c2, c3 c 1, c 2 - ילדים/children של book s 2.1 - צאצא/Descendant (לא ישיר) של book book,c 1,s 1.2 - מסלול/Path (אם כ”א הורה של הקודם) אורך המסלול = מס’ הקשתות = מס’ הצמתים (פחות אחד) צומת ללא ילדים = עלה/Leaf book - אב קדמון/Ancestor של s 3.1 Example : description of a book
4
גובה העץ - אורך המסלול הארוך ביותר מהשורש לעלה (height) עומק צומת - אורך המסלול מהצומת לשורש (depth) Ordered tree יש משמעות לסדר הילדים. מסדרים משמאל לימין. a bC a Cb אם הסדר לא חשוב - עץ לא מסודר (unordered tree)
5
- עץ ריק או לכל צומת יש תת קבוצה של {ילד ימני, ילד שמאלי} דוגמא: עצים בינאריים Full : each internal node always has both children
6
n1n1 n2n2 n3n3 n4n4 n5n5 n6n6 n7n7 * ++ a b c d = (a+b)*(c+d) 1.כל עלה מסומן באופרנד. 2.צומת פנימי מסומן בפעולה דוגמה: Example : expression tree
7
7 Example: Decision Tree Binary tree associated with a decision process –internal nodes: questions with yes/no answer –external nodes: decisions Example: dining decision Want a fast meal? How about coffee?On expense account? Murchie’sSpike’sDeep CoveSan Remo Yes No YesNoYesNo
8
8 The dictionary problem Maintain (distinct) items with keys from a totally ordered universe subject to the following operations
9
9 The ADT Insert(x,D) Delete(x,D) Find(x,D): Returns a pointer to x if x ∊ D, and a pointer to the successor or predecessor of x if x is not in D
10
10 The ADT successor(x,D) predecessor(x,D) Min(D) Max(D)
11
11 The ADT catenate(D 1,D 2 ) : Assume all items in D 1 are smaller than all items in D 2 split(x,D) : Separate to D 1, D 2, D 1 with all items greater than x and D 2
12
12 Reminder from “mavo” We have seen solutions using unordered lists and ordered lists. Worst case running time O(n) We also defined Binary Search Trees (BST)
13
13 Binary search trees A representation of a set with keys from a totally ordered universe We put each element in a node of a binary tree subject to:
14
14 BST 2 7 3 5 8 4 2 8 7 5 10 1 If y is in the left subtree of x then y.key < x.key If y is in the right subtree of x then y.key > x.key
15
15 BST 2 7 3 5 8 4 2 8 7 5 10 1 x.right x.key x.left x x.parent
16
16 Y ← null z ← T.root While z ≠ null do y ← z if x = z.key return z if x < z.key then z ← z.left else z ← z.right return y Find(x,T) 2 8 7 5 10 1
17
17 Y ← null z ← T.root While z ≠ null do y ← z if x = z.key return z if x < z.key then z ← z.left else z ← z.right return y Find(5,T) 2 8 7 5 10 1 z
18
18 Y ← null z ← T.root While z ≠ null do y ← z if x = z.key return z if x < z.key then z ← z.left else z ← z.right return y Find(5,T) 2 8 7 5 10 1 z y
19
19 Y ← null z ← T.root While z ≠ null do y ← z if x = z.key return z if x < z.key then z ← z.left else z ← z.right return y Find(5,T) 2 8 7 5 10 1 z y
20
20 Y ← null z ← T.root While z ≠ null do y ← z if x = z.key return z if x < z.key then z ← z.left else z ← z.right return y Find(5,T) 2 8 7 5 10 1 z y
21
21 Y ← null z ← T.root While z ≠ null do y ← z if x = z.key return z if x < z.key then z ← z.left else z ← z.right return y Find(5,T) 2 8 7 5 10 1 z y
22
22 Y ← null z ← T.root While z ≠ null do y ← z if x = z.key return z if x < z.key then z ← z.left else z ← z.right return y Find(5,T) 2 8 7 5 10 1 z y
23
23 Y ← null z ← T.root While z ≠ null do y ← z if x = z.key return z if x < z.key then z ← z.left else z ← z.right return y Find(6,T) 2 8 7 5 10 1 z y
24
24 Y ← null z ← T.root While z ≠ null do y ← z if x = z.key return z if x < z.key then z ← z.left else z ← z.right return y Find(6,T) 2 8 7 5 10 1 y z=null
25
25 2 8 7 5 10 1 Min(T) 6 Min(T.root) min(z): While (z.left ≠ null) do z ← z.left return (z) 1.5
26
26 n ← new node n.key ← x n.left ← n.right ← null y ← find(x,T) n.parent ← y if x < y.key then y.left ← n else y.right ← n 2 8 7 5 10 1 Insert(x,T)
27
27 2 8 7 5 10 1 Insert(6,T) n ← new node n.key ← x n.left ← n.right ← null y ← find(x,T) n.parent ← y if x < y.key then y.left ← n else y.right ← n
28
28 2 8 7 5 10 1 Insert(6,T) 6 y n ← new node n.key ← x n.left ← n.right ← null y ← find(x,T) n.parent ← y if x < y.key then y.left ← n else y.right ← n
29
29 2 8 7 5 10 1 Delete(6,T) 6
30
30 2 8 7 5 10 1 Delete(6,T)
31
31 2 8 7 5 10 1 Delete(8,T)
32
32 2 8 7 5 10 1 Delete(8,T)
33
33 2 8 7 5 10 1 Delete(2,T) 6 Switch 5 and 2 and delete the node containing 5
34
34 5 8 7 10 1 Delete(2,T) 6 Switch 5 and 2 and delete the node containing 5
35
35 delete(x,T) q ← find(x,T) If q.left = null or q.right = null then z ← q else z ← min(q.right) q.key ← z.key q
36
36 delete(x,T) q ← find(x,T) If q.left = null or q.right = null then z ← q else z ← min(q.right) q.key ← z.key q z
37
37 delete(x,T) q ← find(x,T) If q.left = null or q.right = null then z ← q else z ← min(q.right) q.key ← z.key q
38
38 delete(x,T) q ← find(x,T) If q.left = null or q.right = null then z ← q else z ← min(q.right) q.key ← z.key q z
39
39 delete(x,T) q ← find(x,T) If q.left = null or q.right = null then z ← q else z ← min(q.right) q.key ← z.key If z.left ≠ null then y ← z.left else y ← z.right z
40
40 delete(x,T) q ← find(x,T) If q.left = null or q.right = null then z ← q else z ← min(q.right) q.key ← z.key If z.left ≠ null then y ← z.left else y ← z.right z y
41
41 delete(x,T) q ← find(x,T) If q.left = null or q.right = null then z ← q else z ← min(q.right) q.key ← z.key If z.left ≠ null then y ← z.left else y ← z.right If y ≠ null then y.parent ← z.parent z y
42
42 delete(x,T) q ← find(x,T) If q.left = null or q.right = null then z ← q else z ← min(q.right) q.key ← z.key If z.left ≠ null then y ← z.left else y ← z.right If y ≠ null then y.parent ← z.parent p = y.parent If z = p.left then p.left = y else p.right = y z y p
43
43 delete(x,T) q ← find(x,T) If q.left = null or q.right = null then z ← q else z ← min(q.right) q.key ← z.key If z.left ≠ null then y ← z.left else y ← z.right If y ≠ null then y.parent ← z.parent p = y.parent If z = p.left then p.left = y else p.right = y z y p
44
44 delete(x,T) q ← find(x,T) If q.left = null or q.right = null then z ← q else z ← min(q.right) q.key ← z.key If z.left ≠ null then y ← z.left else y ← z.right If y ≠ null then y.parent ← z.parent p = y.parent If z = p.left then p.left = y else p.right = y
45
45 Variation: Items only at the leaves Keep elements only at the leaves Each internal node contains a number to direct the search 5 9 8 7 10 2 1 2 5 7 8 9 11 Implementation is simpler (e.g. delete) Costs space
46
46 Analysis Each operation takes O(h) time, where h is the height of the tree In general h may be as large as n Want to keep the tree with small h
47
47 Balance h = O(log n) How do we keep the tree balanced through insertions and deletions ?
48
48 2 8 7 5 10 1 successor(x,T) 6 1.5
49
49 successor(x,T) If x has a right child it’s the minimum in the subtree of x.right x
50
50 2 8 7 5 10 1 successor(6,T) 6 1.5
51
51 successor(x,T) If x.right is null, go up until the lowest ancestor such that x is at its left subtree x
52
52 successor(x,T) If x.right ≠ null then min(x.right) y ← x.parent While y≠null and x=y.right do x ← y y ← y.parent return(y) x
53
53 successor(x,T) If x.right ≠ null then min(x.right) y ← x.parent While y≠null and x=y.right do x ← y y ← y.parent return(y) y x
54
54 successor(x,T) If x.right ≠ null then min(x.right) y ← x.parent While y≠null and x=y.right do x ← y y ← y.parent return(y) y x
55
55 successor(x,T) If x.right ≠ null then min(x.right) y ← x.parent While y≠null and x=y.right do x ← y y ← y.parent return(y) y x
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.