Download presentation
1
Fiber and Textile Evidence
Ms Clark PVMHS
2
Fibers are used in forensic science to create a link between crime and suspect
3
If fibers from one person’s clothing were found on a murder victim, does this evidence prove that this person committed the crime? Why or why not?
4
Example: A thief owns a jacket made of a material that happens to match the type of fiber found at the crime scene. This does not mean that he was there, but a jacket like his was.
5
Example: A thief owns a jacket made of a material that happens to match the type of fiber found at the crime scene. This does not mean that he was there, but a jacket like his was. If a jacket fiber, sock fiber, and shirt fiber all from the items the thief owns are found at the crime scene, then the chances they were present are higher or increased.
6
What type of evidence are fibers?
Trace evidence? Direct or circumstantial? Class or Individual? Physical or Biological?
7
What type of evidence are fibers?
Trace evidence? Yes Direct or circumstantial? Class or Individual? Physical or Biological?
8
Fiber Transfer Direct transfer Secondary transfer
Fibers transferred directly from victim to suspect or suspect to victim Secondary transfer Victim picks up fibers, then transfers them to suspect Fibers are transferred from original source to suspect and then to the victim or crime scene
9
Fiber Transfer Example of direct transfer
Fiber from suspect’s shirt transfers onto victim Example of secondary transfer Fiber from carpet at suspect’s home transfers onto his shirt, then transfers onto victim
10
Fiber Collection Early collection is critical
Within 24 hours, an estimated 95% of all fibers may have fallen from a victim or been lost from a crime scene Only collect fibers that are unexpected Ex: Victim has a pink carpet at home, don’t collect pink fibers
11
Considerations by Forensic Scientists
Type of fiber Fiber color Number of fibers found Where fiber was found Type of crime committed Time between crime and discovery of fiber
12
Using your book, elaborate on each of these considerations and add to your notes additional questions to follow up these initial considerations.
13
Fiber Collection Special vacuums Sticky tape Forceps
Important to be very accurate in recording where fibers were found Incomplete or inaccurate recording may cause evidence to be inadmissible in court
14
Fiber Analysis Identify type of fiber and characteristics
Color, shape Match to fibers from a suspect source (car, home) If only one fiber is obtained, only tests that will not damage or alter the fiber can be used Polarizing light microscopy, infrared spectroscopy
15
Fiber Analysis Polarizing Light Microscopy Infrared spectroscopy
Allows scientist to observe fiber at specific wavelengths Infrared spectroscopy Emits a beam that bounces off the material then returns How the beam of light has changed reveals details of the chemical structure of the fiber
16
Fiber Analysis If large quantities are obtained, some fibers may be subjected to simple, but destructive testing Burning in flame Dissolving in liquid
17
Fiber Types Textiles Most common form of fiber transfer
Clothing, carpets, upholstery Constructed by weaving yarns Arranging lengthwise threads (the warp) then weaving crosswise threads (the weft) into different patterns This is called the “weave pattern” Types of weave patterns: tabby, twill, satin
18
Weave patterns Using page 86 in your book, fill out your “weave patterns” table. Draw a diagram of each one
19
Fiber Types Yarns Made up of fibers that have been “spun” together
“Twist” direction is used as part of identification
20
Fiber Classification Natural fibers Synthetic fibers
Come from animals, plants, minerals Synthetic fibers Man-made fibers
21
Natural Fibers Animal fibers Plant fibers
3 sources: hair, fur, webbing Made of proteins Ex: Fur coats, wool from sheep used in textiles, silk Plant fibers Specialized plant cells Sources: seeds, fruits, stems, leaves Made of cellulose Ex: Cotton
22
Plant Fibers Seed fibers Fruit fibers Stem fibers Leaf fibers
Cotton is found at the seed of the cotton plant Fruit fibers Coir is a coarse fiber obtained from the covering of coconuts Stem fibers Hemp, flax Flax is most common – found in linen Leaf fibers Manila is a fiber extracted from abaca leaves (relative of banana tree) Other leaf fibers used to make ropes, twines, netting
23
Natural Fibers Mineral fibers Fiberglass Asbestos
24
Synthetic (man-made) Fibers
Regenerated fibers (modified natural fibers) Derived from cellulose Mostly plant in origin Ex. Rayon Polymer fibers Originate from petroleum products Easy to distinguish between synthetic fibers in lab Ex: Polyester (found in fleece, wrinkle resistant clothes), Nylon, Acrylic (imitation wool), Olefins (thermal socks and carpets)
25
Natural vs Synthetic Fibers
Synthetic fibers are stronger than natural fibers Synthetic fibers are not damaged by microorganisms Synthetic fibers can deteriorate in sunlight Synthetic fibers melt at lower temperatures than natural fibers
26
Appearances of Common Fibers under Microscope
Using page 84, determine what fiber each characteristic belongs to. Copy it down in your table.
27
Summary Class evidence and trace evidence
Scientists try to determine type of fiber, its color, how many if each fiber were found, what textile the fiber came from, whether there were transfers of multiple types of fibers May be gathered using special vacuums, sticky tape, or tweezers
28
Summary Analyzed using polarizing light microscopy, infrared spectroscopy, burn tests, solubility tests May be natural or synthetic Natural: animal hair, plant fibers from seeds, fruit, stems, or leaves, and mineral fibers Synthetic: Regenerated or modified natural fibers and polymer fibers Spun into yarns with specific characteristics Yarns are woven into textiles with different patterns
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.