Download presentation
Presentation is loading. Please wait.
Published byMyron Newton Modified over 9 years ago
1
數值方法 2008, Applied Mathematics NDHU1 Chaos time series
2
數值方法 2008, Applied Mathematics NDHU2 Matlab codes for time series data Data : Chaos Time Series Eric's Home Page
3
數值方法 2008, Applied Mathematics NDHU3 load henon.dat n=length(henon); x1=henon(1:2:n-1); x2=henon(2:2:n); plot(x1,x2,'.')
4
數值方法 2008, Applied Mathematics NDHU4 load MG17.dat n=length(MG17); plot(1:1:n,MG17)
5
數值方法 2008, Applied Mathematics NDHU5 load MG30.dat n=length(MG30); plot(1:1:n,MG30)
6
數值方法 2008, Applied Mathematics NDHU6 load ikeda.dat; plot(ikeda(:,1),ikeda(:,2),'.');
7
數值方法 2008, Applied Mathematics NDHU7 load laser.dat n=length(laser); plot(1:1:n,laser)
8
數值方法 2008, Applied Mathematics NDHU8 >> load lorenz.dat; >> n=size(lorenz,1); >> plot(1:1:n,lorenz(:,1),'r') >> plot3(lorenz(:,1),lorenz(:,2),lorenz(:,3),'.');
9
數值方法 2008, Applied Mathematics NDHU9
10
10
11
數值方法 2008, Applied Mathematics NDHU11 Nonlinear recursions for Lorenz Series
12
數值方法 2008, Applied Mathematics NDHU12 load MG17.dat n=length(MG17); plot(1:1:n,MG17) Non-linear recursion
13
數值方法 2008, Applied Mathematics NDHU13 MLPotts Learning
14
數值方法 2008, Applied Mathematics NDHU14 Numerical Result
15
數值方法 2008, Applied Mathematics NDHU15 Experiment Use the first 1000 data to form a training set Use MLPotts learning to construct nonlinear recursion Use the obtained MLPotts network to predict data within time frame 1000:1100
16
數值方法 2008, Applied Mathematics NDHU16 MLP learning learn_MLP.m eval_MLP2.m fa2d.m
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.