Download presentation
Presentation is loading. Please wait.
Published byBeverly Andrews Modified over 8 years ago
1
Lecture 5
2
Linear Models for Correlated Data: Inference
3
Inference Estimation Methods –Weighted Least Squares (WLS) (V i known) –Maximum Likelihood (V i unknown) –Restricted Maximum Likelihood (V i unknown) –Robust Estimation (V i unknown) Hypothesis Testing Example: Growth of Sitka Trees
4
Weighted-Least Squares Estimation
5
Weighted-Least Squares Estimation (cont’d)
12
Estimation of Mean Model: Weighted Least Squares
13
Estimation of Mean Model: Weighted Least Squares (cont’d)
15
Note that we can re-write the WRRS as:
16
What does this equation say? Examples…
17
Examples: V diagonal
18
Examples: V diagonal (cont’d)
19
Examples: V not diagonal
20
Examples: AR-1 (V not diagonal)
21
Examples: AR-1 (V not diagonal) (cont’d)
22
Weighted Least Squares Estimation: Summary
23
Pigs – “WLS” Fit “WLS” Model results
24
Pigs – “WLS” Fit
28
Pigs – OLS fit. regress weight time Source | SS df MS Number of obs = 432 -------------+------------------------------ F( 1, 430) = 5757.41 Model | 111060.882 1 111060.882 Prob > F = 0.0000 Residual | 8294.72677 430 19.2900622 R-squared = 0.9305 -------------+------------------------------ Adj R-squared = 0.9303 Total | 119355.609 431 276.927167 Root MSE = 4.392 ------------------------------------------------------------------------------ weight | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- time | 6.209896.0818409 75.88 0.000 6.049038 6.370754 _cons | 19.35561.4605447 42.03 0.000 18.45041 20.26081 ------------------------------------------------------------------------------ OLS results
29
Pigs – “WLS” Fit
30
“WLS” Model results
31
Pigs – OLS fit. regress weight time Source | SS df MS Number of obs = 432 -------------+------------------------------ F( 1, 430) = 5757.41 Model | 111060.882 1 111060.882 Prob > F = 0.0000 Residual | 8294.72677 430 19.2900622 R-squared = 0.9305 -------------+------------------------------ Adj R-squared = 0.9303 Total | 119355.609 431 276.927167 Root MSE = 4.392 ------------------------------------------------------------------------------ weight | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- time | 6.209896.0818409 75.88 0.000 6.049038 6.370754 _cons | 19.35561.4605447 42.03 0.000 18.45041 20.26081 ------------------------------------------------------------------------------ OLS results
32
Efficiency
33
Efficiency (cont’d)
34
Example
35
Example (cont’d)
36
When can we use OLS and ignore V? 1.Uniform Correlation Model 2.Balanced Data
37
When can we use OLS and ignore V? (cont’d) 1.(Uniform Correlation) With a common correlation between any two equally- spaced measurements on the same unit, there is no reason to weight measurements differently. 2. (Balanced Data) This would not be true if the number of measurements varied between units because, with >0, units with more measurements would then convey more information per unit than units with fewer measurements.
38
When can we use OLS and ignore V? (cont’d) In many circumstances where there is a balanced design, the OLS estimator is perfectly satisfactory for point estimation.
39
Example: Two-treatment crossover design
40
Example: Two-treatment crossover design (cont’d)
43
(Recall slide) Inference Estimation Methods –Weighted Least Squares (WLS) (V i known) –Maximum Likelihood (V i unknown) –Restricted Maximum Likelihood (V i unknown) –Robust Estimation (V i unknown) Hypothesis Testing Example: Growth of Sitka Trees
44
Maximum Likelihood Estimation under a Gaussian Assumption
45
Maximum Likelihood Estimation under a Gaussian Assumption (cont’d)
48
(Recall slide) Inference Estimation Methods –Weighted Least Squares (WLS) (V i known) –Maximum Likelihood (V i unknown) –Restricted Maximum Likelihood (V i unknown) –Robust Estimation (V i unknown) Hypothesis Testing Example: Growth of Sitka Trees
49
Restricted Maximum Likelihood Estimation
50
(Recall slide) Inference Estimation Methods –Weighted Least Squares (WLS) (V i known) –Maximum Likelihood (V i unknown) –Restricted Maximum Likelihood (V i unknown) –Robust Estimation (V i unknown) Hypothesis Testing Example: Growth of Sitka Trees
51
Generalized Least Square Estimator Robust Estimation (unstructured covariance matrix)
52
Robust Estimation of V under a saturated model
53
Robust Estimation of V “restricted ML” – makes estimates unbiased
54
Example
55
Robust Estimation vs. A Parametric Approach
56
Maximum Likelihood Estimation of V
57
Example: Growth of sitka trees
58
Figure 1. Observed data and mean response profiles in each of the four growth chambers for the treatment and control.
59
Figure 2. Observed mean response in each of the four chambers. Season 1 Season 2
61
Example: Growth of sitka trees (cont’d)
62
We first consider the 1998 data.
63
Example: Growth of sitka trees (cont’d) Unstructured covariance matrix
65
Example: Growth of sitka trees (cont’d)
72
Sitka spruce data: Estimated covariance matrix for 1988
73
Sitka spruce data: Estimated covariance matrix for 1989
75
Summary: Unstructured Covariance Matrix
76
Summary: Parametric Models for Covariance Reasons for parametric modelling:
77
Summary: Parametric Models for Covariance (cont’d) Reasons for parametric modelling (cont’d):
78
Summary: Unstructured vs. Parametric Covariance
79
Overall Summary
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.