Download presentation
Presentation is loading. Please wait.
Published bySara Johns Modified over 9 years ago
1
Spatial Econometric Analysis Using GAUSS 10 Kuan-Pin Lin Portland State University
2
Spatial Panel Data Models The General Model
3
Spatial Panel Data Models Assumptions Fixed Effects Random Effects Spatial Error Model: A=I or =0 Spatial Lag Model: B=I or =0 Panel Data Model: A=B=I
4
Spatial Panel Data Models Example: U. S. Productivity (48 States, 17 Years) Panel Data Model ln(GSP) = + ln(Public) + 2 ln(Private) + 3 ln(Labor) + 4 (Unemp) + u + v Spatial Lag Model ln(GSP) = + ln(Public) + 2 ln(Private) + 3 ln(Labor)+ 4 (Unemp) + λW ln(GSP) + u + v Spatial Error Model ln(GSP) = + ln(Public) + 2 ln(Private) + 3 ln(Labor) + 4 (Unemp) + W e e u + v Spatial Mixed Model ln(GSP) = + ln(Public) + 2 ln(Private) + 3 ln(Labor) + 4 (Unemp) + λW ln(GSP) + W e e u + v
5
Model Estimation Based on panel data models (pooled, fixed effects, random effects), we consider: Spatial Error Model Spatial Lag Model Spatial Mixed Model Model Estimation Generalized Least Squares (IV/GLS) Generalized Method of Moments (GMM/GLS) Maximum Likelihood Estimation
6
Spatial Lag Model Estimation The Model: SPLAG(1) OLS is biased and inconsistent.
7
Spatial Lag Model Estimation Fixed Effects
8
Spatial Lag Model Estimation Fixed Effects: IV or 2SLS Instrumental Variables Two-Stage Least Squares
9
Spatial Lag Model Estimation Random Effects
10
Spatial Lag Model Estimation Random Effects: IV/GLS Instrumental Variables Two-Stage Generalized Least Squares
11
Spatial Lag Model Estimation Random Effects: IV/GLS Feasible Generalized Least Squares Estimate v 2 and u 2 from the fixed effects model: FGLS for random effects model:
12
Spatial Error Model Estimation The Model: SPAR(1) Fixed Effects Random Effects
13
Spatial Error Model Estimation Fixed Effects Moment Functions
14
Spatial Error Model Estimation Fixed Effects The Model: SPAR(1) Estimate and iteratively: GMM/GLS OLS GMM GLS
15
Spatial Error Model Estimation Random Effects Moment Functions (Kapoor, Kelejian and Prucha, 2006)
16
Spatial Error Model Estimation Random Effects The Model: SPAR(1) Estimate and iteratively: GMM/GLS OLS GMM GLS
17
Spatial Mixed Model Estimation The Model: SARAR(1,1)
18
Spatial Mixed Model Estimation Two-Stage Estimation Sample moment functions are the same as in the spatial error AR(1) model. The efficient GMM estimator follows exactly the same as the spatial error AR(1) model. The transformed model which removes spatial error AR(1) correlation is estimated the same way as the spatial lag model using IV and GLS.
19
Spatial Mixed Model Estimation Fixed Effects The Model: SPARAR(1,1)
20
Spatial Mixed Model Estimation Fixed Effects Estimate and iteratively: GMM/GLS IV/2SLS GMM GLS
21
Spatial Mixed Model Estimation Random Effects The Model: SPARAR(1,1)
22
Spatial Mixed Model Estimation Random Effects Estimate and iteratively: GMM/GLS IV/2SLS GMM GLS
23
Example: U. S. Productivity Baltagi (2008) [munnell.5]munnell.5 Spatial Panel Data Model: GMM/GLS (Spatial Error) ln(GSP) = + ln(Public) + 2 ln(Private) + 3 ln(Labor) + 4 (Unemp) + =ρW + e, e = i u + v Fixed Effectss.e Random Effectss.e 0.0050.0260.0310.023 0.202*0.0240.273*0.021 33 0.782*0.0290.736*0.025 44 -0.002*0.001-0.005*0.001 00 --2.222*0.136 ρ0.578*0.0460.321*0.060
24
Example: U. S. Productivity Baltagi (2008) [munnell.5]munnell.5 Spatial Panel Data Model: GMM/GLS (Spatial Mixed) ln(GSP) = + ln(Public) + 2 ln(Private) + 3 ln(Labor) + 4 (Unemp) + λW ln(GSP) + =ρW + e, e = i u + v Fixed Effectss.e Random Effectss.e -0.0100.0260.0400.024 0.185*0.0250.259*0.022 33 0.756*0.0290.728*0.026 44 -0.003*0.001-0.005*0.001 00 --2.031*0.174 λ0.093*0.0240.030*0.015 ρ0.488*0.0510.312*0.059
25
Another Example China Provincial Productivity [china.9]china.9 Spatial Panel Data Model: GMM/GLS (Spatial Error) ln(Q) = + ln(L) + ln(K) + =ρW + e, e = i u + v Fixed Effectss.e Random Effectss.e 0.29280.0730.48980.062 0.02820.0170.00900.017 --2.62980.587 ρ0.50130.0590.64240.071
26
Another Example China Provincial Productivity [china.9]china.9 Spatial Panel Data Model: GMM/GLS (Spatial Mixed) ln(Q) = + ln(L) + ln(K) + W ln(Q) + =ρW + e, e = i u + v Fixed Effectss.e Random Effectss.e 0.2560.0800.4810.076 0.0220.0190.0130.015 --6.5132.394 λ0.2870.1891.2030.059 ρ0.2670.074-0.4750.239
27
Maximum Likelihood Estimation Error Components Assumptions Fixed Effects: Random Effects:
28
Maximum Likelihood Estimation Fixed Effects Log-Likelihood Function
29
Maximum Likelihood Estimation Fixed Effects Log-Likelihood Function (Lee and Yu, 2010) Where z* is the transformation of z using the orthogonal eigenvector matrix of Q.
30
Maximum Likelihood Estimation Random Effects Log-Likelihood Function
31
Example: U. S. Productivity Baltagi (2008) [munnell.4]munnell.4 Spatial Panel Data Model: QML (Spatial Lag) ln(GSP) = + ln(Public) + 2 ln(Private) + 3 ln(Labor) + 4 (Unemp) + λW ln(GSP) + , = i u + v Fixed Effectss.e Random Effectss.e -0.0470.0260.0130.028 0.187*0.0250.226*0.025 33 0.625*0.0290.671*0.029 44 -0.005*0.0009-0.006*0.0009 00 --1.658*0.166 λ0.275*0.0220.162*0.029
32
Example: U. S. Productivity Baltagi (2008) [munnell.4]munnell.4 Spatial Panel Data Model: QML (Spatial Error) ln(GSP) = + ln(Public) + 2 ln(Private) + 3 ln(Labor) + 4 (Unemp) + =ρW + e, e = i u + v Fixed Effectss.e Random Effectss.e 0.0050.0260.0450.027 0.205*0.0250.246*0.023 33 0.782*0.0290.743*0.027 44 -0.002*0.001-0.004*0.001 00 --2.3250.155 ρ0.557*0.0340.527*0.033
33
Example: U. S. Productivity Baltagi (2008) [munnell.4]munnell.4 Spatial Panel Data Model: QML (Spatial Mixed) ln(GSP) = + ln(Public) + 2 ln(Private) + 3 ln(Labor) + 4 (Unemp) + λW ln(GSP) + =ρW + e, e = i u + v Fixed Effectss.e Random Effectss.e -0.0100.0270.0440.023 0.191*0.0250.249*0.023 33 0.755*0.0310.742*0.027 44 -0.003*0.001-0.004*0.001 00 --2.289*0.212 λ0.0890.0310.0040.017 ρ0.455*0.0520.522*0.038
34
Another Example China Provincial Productivity [china.8]china.8 Spatial Panel Data Model: QML (Spatial Lag) ln(Q) = + ln(L) + ln(K) + W ln(Q) + = i u + v Fixed Effectss.e Random Effectss.e 0.22030.07070.37940.074 0.01770.0163-0.00460.016 --0.90810.626 λ0.43610.05570.39410.055
35
Another Example China Provincial Productivity [china.8]china.8 Spatial Panel Data Model: QML (Spatial Error) ln(Q) = + ln(L) + ln(K) + =ρW + e, e = i u + v Fixed Effectss.e Random Effectss.e 0.29690.0730.49280.077 0.02970.0170.00910.017 --2.65480.657 ρ0.45210.0580.43640.055
36
Another Example China Provincial Productivity [china.8]china.8 Spatial Panel Data Model: QML (Spatial Mixed) ln(Q) = + ln(L) + ln(K) + W ln(Q) + =ρW + e, e = i u + v Fixed Effectss.e Random Effectss.e 0.1430.0580.2470.062 0.0040.013-0.0140.013 ---0.1190.496 λ0.7310.0580.7120.064 ρ-0.5710.136-0.5630.145
37
References Elhorst, J. P. (2003). Specification and estimation of spatial panel data models, International Regional Science Review 26, 244-268. Kapoor M., Kelejian, H. and I. R. Prucha, “Panel Data Models with Spatially Correlated Error Components,” Journal of Econometrics, 140, 2006: 97-130. Lee, L. F., and J. Yu, “Estimation of Spatial Autoregressive Panel Data Models with Fixed Effects,” Journal of Econometrics 154, 2010: 165-185.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.