Presentation is loading. Please wait.

Presentation is loading. Please wait.

GenABEL: an R package for Genome Wide Association Analysis

Similar presentations


Presentation on theme: "GenABEL: an R package for Genome Wide Association Analysis"— Presentation transcript:

1 GenABEL: an R package for Genome Wide Association Analysis
Younghun Han Department of Epidemiology UT MD Anderson Cancer Center

2 Outline Introduction GeneABEL: GWAA.data class
Importing data to GenABEL Genetic data QC GWA association analysis

3 Introduction GenABEL is an R library developed to facilitate Genome-Wide Association analysis of binary and quantitative traits. Features of GenABEL : specific facilities for storage and manipulation of large data QC Maximum Likelihood estimation of linear, logistic and Cox regression on Genome-wide scale Specific functions to analyze and display the results

4 GeneABEL: GWAA.data class

5 GWAA.data class >library(GenABEL) >load(“lung2291.Rdata”)

6 GWAA.data class

7 Importing data to GenABEL
Need a phenotypic and genotypic data Example of a phenotype file : Example of a genotypic data (PLINK tped files) TPED- file TFAM -file

8 Importing data to GenABEL
Convert the data to GenABEL raw format : > convert.snp.affymetrix() > convert.snp.illumina() > convert.snp.mach() > convert.snp.ped() > convert.snp.text() > convert.snp.tped() Load the data into GenABEL >load.gwaa.data() Example : > convert.snp.tped(tped="lung2291.tped", tfam="lung2291.tfam",out="lung2291.raw", strand=“u") > lung2291<- load.gwaa.data(phe="pheno.txt", gen="lung2291.raw",force = T)

9 Genetic data QC summary.snp.data() : Number of observed genotypes, allelic frequency, genotypic distrbution, P-value of the exact test for HWE check.trait() : summary of phenotypic data check for outliers (using False Discovery Rate framework) and plots the raw data check.marker() : The major genetic data QC function of GenABEL HWE.show() : showing HWE tables, Chi2 and exact HWE P-values perid.summary() : call rate and heterozygosity per person ibs() : matrix of average IBS for a group of people hom() : average homozygosity (inbreeding) for a set of people, across multiple markers EXAMPLE of QC

10 GWA association analysis
Descriptives of the phenotypic and marker data : descriptives.trait(lung2291) descriptives.trait(lung2291, by=case_control) descriptives.marker(lung2291) descriptives.marker(lung2291,ids=(case_control==0)) Score test an0 <- qtscore(case_control, data=lung2291, trait = "binomial") an1 <- qtscore(case_control~sex, data=lung2291, trait = "binomial") Chi-squre test for binary trait an2 <- ccfast("case_control", data=lung2291) SNP association test using glm in R library Scan.glm(“case_control~sex+CRSNP”, family=binomial) Scan.glm(“case_control~sex*CRSNP”, family=binomial) # no G*E test Scan.glm.2D(“case_control~sex+CRSNP”, family=binomial) # 2-snp interaction scan Note : formula must contain CRSNP variable to be replaced with the analysis SNPs

11 GWA association analysis
GWAS results from qtscore, ccfast, scan.glm P1df : P-values of 1-d.f. (additive or allelic) test P2df : P-values of 2-d.f. (genotypic) test for association Pc1df : P-values of 1-d.f. test: the statistics is corrected for possible inflation effB: Effect of the B allele(second allele from coding) in allelic test (OR for ccfast) effAB : Effect of the AB effBB : Effect of the BB map : list of map positions of the SNPs chromosome : list of chromosomes the SNPs belong to idnames : list of people used in analysis lambda : inflation factor estimate formula : formula/function call was used to compute P-values family : family of the link function

12 Example of descriptives.trait() and descriptives.marker()

13 Example of qtscore() and ccfast()

14 Example of scan.glm() and scan.glm.2D()

15

16

17

18

19 Thank you!!!


Download ppt "GenABEL: an R package for Genome Wide Association Analysis"

Similar presentations


Ads by Google