Download presentation
Presentation is loading. Please wait.
Published byPoppy Hodges Modified over 9 years ago
1
Sylvia Pietzsch Chair for Image Understanding Computer Science Technische Universität München pietzsch@in.tum.de Learning Generic and Person Specific Objective Functions Diplomarbeit
2
07.02.2007 2/16 Technische Universität München Sylvia Pietzsch Overview Model-based Image Interpretation Generic Objective Functions Traditional Approach Ideal Objective Functions Learning Objective Functions Experimental Evaluation Person-specific Objective Functions Experimental Evaluation
3
07.02.2007 3/16 Technische Universität München Sylvia Pietzsch Model-based Image Interpretation Model Contains a parameter vector p that represents the model‘s configurations. Objective Function Calculates how well a parameterized model fits to an image. Fitting Algorithm Searches for the model that fits the image best by minimizing the objective function.
4
07.02.2007 4/16 Technische Universität München Sylvia Pietzsch Traditional Approach Designer selects salient features from the image and composes them. Based on designer‘s intuition and implicit knowledge of the domain. shortcomings: time-consuming resulting objective function is not ideal
5
07.02.2007 5/16 Technische Universität München Sylvia Pietzsch Ideal Objective Functions P1:Correctness Property: The global minimum of the objective function corresponds to the best model fit. P2:Uni-Modality Property: The objective function has no local extrema or saddle points.
6
07.02.2007 6/16 Technische Universität München Sylvia Pietzsch Example: Comparing Objective Functions a) image b) along perpendicular c) edge values d) designed objective function e) ideal objective function f) training samples g) learned objective function
7
07.02.2007 7/16 Technische Universität München Sylvia Pietzsch Learning the Objective Function (1)
8
07.02.2007 8/16 Technische Universität München Sylvia Pietzsch Learning the Objective Function (2)
9
07.02.2007 9/16 Technische Universität München Sylvia Pietzsch Learning the Objective Function (3) 6 styles · 3 sizes · (5 · 5) locations = 450 features
10
07.02.2007 10/16 Technische Universität München Sylvia Pietzsch Evaluation 1: Used Features Model trees tend to select the most relevant features. Edge-based features are hardly used at all.
11
07.02.2007 11/16 Technische Universität München Sylvia Pietzsch Evaluation 2: Robustness Indicators measure the fulfillment of P1 and P2: I1:Correctness Indicator Distance between the ideal position of the contour point and the global minimum of the objective function I2:Uni-Modality Indicator Total number of local minima divided by the size of the considered region
12
07.02.2007 12/16 Technische Universität München Sylvia Pietzsch Evaluation 3: Learning Distance
13
07.02.2007 13/16 Technische Universität München Sylvia Pietzsch Person Specific Objective Functions Single Images The objective function has to take any appearance of a human face into consideration. ➱ moderate accuracy Image Sequence The appearance of a person‘s face only changes slightly. Consider particular characteristics of the visible person, e.g. beard, glasses, bald head,... ➱ increase of accuracy Challenges: Learn specific objective functions for groups of persons offline. Detect the correct group online.
14
07.02.2007 14/16 Technische Universität München Sylvia Pietzsch Evaluation: Fitting Results 45 persons from news broadcasts on TV
15
07.02.2007 15/16 Technische Universität München Sylvia Pietzsch Outlook Learning objective functions for 3D-Models Integration of further image features Compute the image features on the fly Automatic detection of the visible person: e.g. via AAM parameters
16
07.02.2007 16/16 Technische Universität München Sylvia Pietzsch The End
17
07.02.2007 17/16 Technische Universität München Sylvia Pietzsch Improving the Accuracy of the Training Step model tree algorithm M5‘ uses standard deviation reduction as splitting criterion shortcomings: solution: taking not only the distance to the ideal feature point into consideration but also the direction bim: Diese Folie passt hier nicht. Ich würde sie ganz weglassen. Oder am Schluss nur kurz ansprechen.
18
07.02.2007 18/16 Technische Universität München Sylvia Pietzsch Learning Person-specific Objective Functions offline step: subdivide persons into groups best possible grouping: minimum error between annotated model parameters and model parameters obtained by fitting the model to a set of test images using the objective function of this grouping learning group-specific objective functions online step:
19
07.02.2007 19/16 Technische Universität München Sylvia Pietzsch The End
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.