Download presentation
Presentation is loading. Please wait.
Published byShawn Johnston Modified over 9 years ago
1
1 Heavy quark system in vacuum and in medium Su Houng Lee In collaboration with Kenji Morita Also, thanks to group members: Present: T. Song, K.I. Kim, W.S. Park, H. Park, K. Jeong Former: K. Ohnishi, S. Yasui, Y. Song
2
S H Lee 2 Hadronic Physics at B-factory, LEPS and J-PARC B-factory Heavy quark physics Heavy Exotics LEPS: Chiral, Exotics J-PARC D, anti-p, nuclear matter Heavy Exotics qq, Qq in nuclear matter Chiral symmetry breaking QQ in nuclear matter confinement
3
S H Lee 3 Some perspectives on sQGP and relation to deconfinement K.Morita, SHL: PRL 100, 022301 (08) K.Morita, SHL: PRC 77, 064904 (08) SHL, K. Morita: PRD 79, 011501 (09) Y.Song, SHL, K.Morita: PRC 79, 014907 (09)
4
S H Lee 4 QCD Phase transition: Lattice data on (, p) Rescaled pressure (Karsch 01) Karsch hep-lat/0106019 Lattice result for purge gauge (Boyd et al 96) p/T 4 /T 4 Sudden increase in Slow increase in p Latest Lattice result (Bazavov et al 09) sQGP
5
S H Lee 5 Two gluon operators (quenched case): M 2 M 0 Operators Thermodynamics Energy momentum Tensor Twist-2 GluonGluon condensate sQGP
6
S H Lee 6 EOS in terms of M 0 M 2 Bag model EOS in QGP phase Dominated by non perturbative change at Tc : SHL, PRD40,2484 (89) Effects of dynamical quarks on M 0 M 0, M 2 and Bag model EOS
7
S H Lee 7 Relation to Electric and Magnetic condensate Relation to deconfinement T T =0 W(S-T) W(S-S) Time Space L L OPE 1- (ST) 2 +… OPE 1- (SS) 2 +… exp(- V(T)) Using s from Kaczmarek et al (prd04) Deconfinement involves both perturbative (M 2 ) and Non perturbative (M 0 ) change M 0, M 2 E 2, B 2 confinement
8
S H Lee 8 Linear density approximation Condensate at finite density At = 5 x n.m. M 0, M 2 in nuclear matter
9
S H Lee 9 QCD vacuum Nuclear medium: 20% deconfinement
10
S H Lee 10 Approaches to Heavy quark system in medium OPE, QCD Stark Effect, and QCD sum rules
11
S H Lee 11 Heavy quark correlation function (q 2 ) OPE makes sense when Definition Operator product expansion (OPE) Even in medium as long as
12
S H Lee 12 q 2 =0 : photo production of open charm q 2 =m 2 J/ : OPE for bound state (Peskin 79) -q 2 >0 : QCD sum rules for heavy quarks 2 nd order Stark Effect NLO width ( Song, Lee 05) Applicable cases
13
S H Lee 13 OPE for bound state: m infinity QCD 2 nd order Stark Effect : > qcd Attractive for ground state
14
S H Lee 14 2 nd order Stark effect from pNRQCD LO Singlet potential from pNRQCD : Brambilla et al. Derivation 1/r > Binding > QCD, Take expectation value Large Nc limit Static condensate Energy
15
S H Lee 15 q 2 =0 : photo production of open charm q 2 =m 2 J/ : OPE for bound state (Peskin 79) -q 2 >0 : QCD sum rules for heavy quarks Constraint on ( m, Applicable cases
16
S H Lee 16 Q 2 =-q 2 >0, QCD sum rules for Heavy quark system OPE Phenomenological side s J/ ’’ sum rule at T=0 : can take any Q 2 >=0,
17
S H Lee 17 Matching M n-1 /M n from Phen to OPE Obtain constraint for m J/ and OPEPhenomenological side s J/ ’’ +c <G2><G2> <G2><G2> sum rule in medium
18
S H Lee 18 QCD sum rule constraint Mass and width of J/ in nuclear Matter (Morita, Lee 08)
19
S H Lee 19 Quantum numbers QCD 2 nd Stark eff. Potential model QCD sum rules Effects of DD loop c 0 -+ –8 MeV–5 MeV (Klingl, SHL,Weise, Morita) No effect J/ 1 -- –8 MeV (Peskin, Luke) -10 MeV (Brodsky et al). –7 MeV (Klingl, SHL,Weise, Morita) <2 MeV (SHL, Ko) c c 0,1,2 ++ -20 MeV-15 MeV (Morita, Lee) No effect on c1 (3686) 1 -- -100 MeV< 30 MeV (3770) 1 -- -140 MeV< 30 MeV Other approaches for mass shift in nuclear matter
20
S H Lee 20 Anti proton Heavy nuclei Observation of m through p-A reaction Expected luminosity at GSI 2x 10 32 cm -2 s -1 Can be done at J-PARC
21
S H Lee 21 Some perspectives on Diquarks and heavy exotics F.Navara, M. Nielsen, SHL: PLB 649, 166 (07) SHL, S.Yasui, W.Liu, CMKo: EPJC 54, 259 (08) SHL, M. Nielsen et al: PLB 661, 28 (08) SHL, K.Morita, M.Nielsen: PRD 78, 076001 (08), NPA 815,29 (09) SHL, M.Nielsen, U. Wiedner: JKPS 55,424(09) SHL, S. Yasui: EPJC (09) in press
22
S H Lee 22 J PC Special feature QSR tetraquark QSR molecule Others X(3872) 1 ++ B(X J)/B( X )=1 [AV][S] m=3.92 (Nielsen..) DD* m=3.87 (Nielsen,..) QSR with (Morita), Mixture with cc Y 1 –- ISR Belle 4260,4360,4660 BaBar 4260,4360 [V][S] q=s m=4.65 q=u,d m=4.49 (Nielsen, et al) Ds0Ds* m=4.42 D0D* m=4.27 DD1 m=4.19 (Nielsen et al ) Hybrid Z +(4430) ?,0 - ’ [PS][S] m=4.52 (Nielsen, et al) D*D1 m=4.40 (Nielsen, Lee et al ) Z+(4050,4250) ? D*D* m=4.15 DD1=4.19 (Nielsen, et al ) D*D*(4020) D1D(4285) threshold effect Newly observed states
23
S H Lee 23 QCD sum rule results on X(3872), Z(4430) In principle QCD can not distinguish between diquark configuration and molecular configuration However, seems to favor molecular current for all states
24
S H Lee 24 Tetraquarks: Jaffe color spin interaction: light scalar nonet q3q3 q1q1 q2q2 q4q4 diquark picture: Yasui, Lee,.. (EJP08,EJP09) Heavy Dibaryon Hc: (ud) (us) (uc) stable against (ud) u + (us) c Heavy Tetraquark with spin 0 or spin 1
25
S H Lee 25 color spin interaction: light scalar nonet q3q3 q1q1 q2q2 q4q4 Two heavy anti-quarks: explicitly exotic Heavy and explicitly exotic tetraquarks
26
S H Lee 26 Belle: PRL 98, 082001 (07) e+ e- J/ + X(3904) D D* T cc (3800) e+ e c c SHL, S Yasui, W Liu, C Ko (08) Can look for 1 + (Tcc) Previous works on Tcc Z. Zouzou, B. Silverstre-Brac, C. Gilgnooux, J Richard (86), D. Janc, M. Rosina (04), Y. Cui, S. L. Zhu (07) QCD sum rules: F Navarra, M.Nielsen, SHLee, PLB 649, 166 (2007) simple diquark: SHL, S. Yasui, W.Liu, C Ko EPJ C54, 259 (2008), SHL, S. Yasui: EPJ C (09) in press c c
27
S H Lee 27 1.QCD phase transition is characterized by Perturbative M2 and Non perturbative M0 change 20% effect at Nuclear matter 3.More work on X,Y, Z are needed. 2.Heavy quark system can probe these changes and study confinement physics FAIR, J-PARC Summary 4.Explicitly Exotic heavy particles: Hc, Tcc, … FAIR, J-PARC D, anti-proton etc..
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.