Download presentation
Presentation is loading. Please wait.
Published byJunior Griffin Modified over 9 years ago
1
朱守华, 北京大学物理学院 1 Part I: 3-sigma anomaly of W->tau nu decay in new physics beyond SM in new physics beyond SM ----first clean hint of right-handed charge current? (hep-ph/0504123) 朱守华( Shou-hua Zhu ) Peking University July 2005 @ Tsinghua Univ. 3-sigma anomaly of W->tau nu measurements Anomaly in 2HDM and MSSM Anomaly indicates right-handed charge current?
2
朱守华, 北京大学物理学院 2 Two destinations of puzzles 1: Puzzles stand for new dynamics Speed of light as constant - puzzle Sun neutrino missing 2: Puzzles stand for ignorance (both theoretical and expt.) CDF di-jet Re( ) in K-system b-inclusive production
3
朱守华, 北京大学物理学院 3 ADL final O prel. Anomaly mainly comes from L3
4
朱守华, 北京大学物理学院 4 3-sigma anomaly of W->tau measurements, hep-ex/0412015 New physics?
5
朱守华, 北京大学物理学院 5 3-sigma anomaly of W->tau nu is especially interesting and important: In SM involved is only pure left-handed charge current Simpler kinematics and less hadronic uncertainties.
6
朱守华, 北京大学物理学院 6 Possible explanations in new physics beyond the SM: Oblique-type corrections -> NO! Flavor-dependent interaction! Satisfy neutral-current data (Z-decay) at O(0.1%) Satisfy tau-> nu_tau l nu_l data Tan(beta) enhancement flavor interactions Higgs-fermion Yukawa couplings in 2HDM Chargino(Neutrolino)-fermion couplings in MSSM Positive!
7
朱守华, 北京大学物理学院 7 2-Higgs doublet model (2HDM) Negative except for near-degenerate Higgs mass case: Lebedev etal., PRD62(2000)055014
8
朱守华, 北京大学物理学院 8 MSSM Use FeynArts, FormCalc, LoopTools to scan parameter space In most cases, delta_new is negative In all cases
9
朱守华, 北京大学物理学院 9
10
10
11
朱守华, 北京大学物理学院 11
12
朱守华, 北京大学物理学院 12 Anomaly in 2HDM and MSSM It is hard to account for anomaly in two models. And it is even harder to account for both W anomaly and neutral data.
13
朱守华, 北京大学物理学院 13 Anomalous left- and right-handed couplings From W->tau nu_tau data:
14
朱守华, 北京大学物理学院 14 Constraints from tau-decay data Delta_L and Delta_R are constrainted by Michel parameters which can be extracted from energy spectrum of daughter letopn in tau->nu_tau l nu_l. PDG(2004)
15
朱守华, 北京大学物理学院 15 Allowed small regions at 95% CL R : 0-> 0.12 L : 1-> 1.005
16
朱守华, 北京大学物理学院 16 Anomalous left- and right-handed couplings for 3rd generation quark : 3rd generation quark : From B->X_s gamma measurements: Re( R )< 4 10 -3 for Wtb F. Larios etal., PLB457 (1999)334 | R | 0.12 for W ?
17
朱守华, 北京大学物理学院 17 Summary for 1st part (questions) How is this anomaly related to fermion mass generation (flavor physics)? Is W->tau nu_tau 3-sigma anomaly the first clean signal for the existence of right-handed charge current? Will parity be restored at high energy? Does anomaly indicate the non-universality of gauge interactions for different generation? X.Y. Li and E. Ma, PRL47, 1788(1981)
18
Part II: Distinguishing Split from TeV (normal) SUSY at ILC hep-ph/0407072, PLB604,207(2004) 朱守华 Shou-hua Zhu Peking University July 2005@ Tsinghua Univ.
19
朱守华, 北京大学物理学院 19 Outline Why Split SUSY (SS)? How to distinguish SS from TeV SUSY? Chargino pair production at Linear colliders Summary
20
朱守华, 北京大学物理学院 20 Why Split SUSY? (I) Naturalness problem in the SM m H phy = m H 0 +c 2 +…, ---new physics scale => New Physics should appear at TeV (TeV/ EW ~10) Solutions (TeV scale New Physics) to Naturalness problem TeV SUSY or little Higgs models Low scale gravity Composite Higgs boson etc.
21
朱守华, 北京大学物理学院 21 TeV New Physics is an attracting thing (important basis of future colliders), but …
22
朱守华, 北京大学物理学院 22 Akani-Hamed, Pheno2005
23
朱守华, 北京大学物理学院 23 S. Dawson, LP2005
24
朱守华, 北京大学物理学院 24 TeV SUSY is a beautiful thing (GUT, dark matter, aesthetic …), but …
25
朱守华, 北京大学物理学院 25 S. Dawson, LP2005
26
朱守华, 北京大学物理学院 26 Shortcomings of TeV SUSY not yet found Higgs small hierarchy problem (remind: in MSSM at LO mH<MZ) excess flavor and CP violation =>”CP problem” fast dim-5 proton decay etc. …
27
朱守华, 北京大学物理学院 27 Seems M New Physics >>TeV, did we miss something important? Is that possible that naturalness …?
28
朱守华, 北京大学物理学院 28 Why Split SUSY? (II) Failure of Naturalness of Cosmological Constant ->…
29
朱守华, 北京大学物理学院 29 Akani-Hamed, Pheno2005
30
朱守华, 北京大学物理学院 30 Fine tuning => God mechanisms Assuming UNKNOWN mechanism for finely tuned CC is also applied to Higgs sector…
31
朱守华, 北京大学物理学院 31 GUT and Dark Matter instead of Naturalness are guiding principles Split Supersymmetry N. Arkani-Hamed &S. Dimopoulos, hep-ph/0405159 Split Supersymmetry can get (a) GUT ( slightly improved) (b) Dark Matter density (c) higher Higgs mass (120~160 GeV) (d) cures to most of TeV SUSY diseases etc.
32
朱守华, 北京大学物理学院 32 Akani-Hamed, Pheno2005
33
朱守华, 北京大学物理学院 33 What is Split SUSY? SS has only one finely tuned and light Higgs boson while other scalars are ultra heavy. Gaugino and Higgsino might be light. Effective Lagrangian at low energy, besides kinetic terms, after integrating out higher scalar mass:
34
朱守华, 北京大学物理学院 34 How to distinguish SS? Precisely measuring Higgsino-gaugino-Higgs vertexes e.g. O(0.1 fb) hep-ph/0407108 Scale of scalars is the most characteristic feature of SS, but directly producing scalars other than light Higgs boson is difficult. How to determine scalar mass? (a) Long-lived gluino as a probe of scalar mass at LHC or
35
朱守华, 北京大学物理学院 35 Chargino production at LCs (b) Chargino pair production at Linear colliders can probe the properties of chargino S.Y. Choi et.al. (1999) and (2000) and is sensitve to sneutrino mass.
36
朱守华, 北京大学物理学院 36 SS Parameter Space & Mixed Region Assuming gaugino mass unification and dark matter constraint: 0.094 < DM h 2 <0.129 G. Giudice & A. Romanino, hep-ph/0406088
37
朱守华, 北京大学物理学院 37 10 TeV 1 TeV Point Pa: Differential and Forward-backward Asymmetry (11)
38
朱守华, 北京大学物理学院 38 Point Pa: total (11), (12) and (22) are all sensitive to sneutrino mass up to 10 TeV for lower M 2 and .
39
朱守华, 北京大学物理学院 39 Point Pb: Total (22) Mode is most promising for higher M 2 and .
40
朱守华, 北京大学物理学院 40 Summary for 2nd part Chargino pair production can probe the sneutrino mass up to 10 TeV. Need further simulation! It provides a very crucial method to distinguish Split from TeV (normal) SUSY. All three modes (11), (12) and (22) should be analyzed. Current and planning colliders can’t cover all SS parameter space.
41
朱守华, 北京大学物理学院 41 Thanks for your attention!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.