Presentation is loading. Please wait.

Presentation is loading. Please wait.

Search for heavy neutrino in K‾→ µ‾ ν γ decay at ISTRA+ setup Viacheslav Duk, INR RAS ISTRA+ collaboration ISTRA+ IHEP U-70 (Protvino, Russia)

Similar presentations


Presentation on theme: "Search for heavy neutrino in K‾→ µ‾ ν γ decay at ISTRA+ setup Viacheslav Duk, INR RAS ISTRA+ collaboration ISTRA+ IHEP U-70 (Protvino, Russia)"— Presentation transcript:

1 Search for heavy neutrino in K‾→ µ‾ ν γ decay at ISTRA+ setup Viacheslav Duk, INR RAS ISTRA+ collaboration ISTRA+ IHEP U-70 (Protvino, Russia)

2 Plan LSND/KARMEN/MiniBooNE anomaly and heavy sterile neutrino ν h Search for ν h in kaon decays ISTRA+ setup Event selection for K ‾ → µ ‾ ν γ Signal extraction Limits for |U µh | 2 Conclusions QFTHEP-20112V.A.Duk, INR RAS

3 Kaon decays: motivation QFTHEP-2011 Relatively easy to get kaon beams Possibility to do precise measurements V.A.Duk, INR RAS Check SM predictions Search for NP 3 experimenttheory Low uncertainties in calculations within Standard Model (SM) New Physics (NP) contributions

4 Motivation for this work Paper by S.N.Gninenko (INR RAS) Resolution of puzzles of LSND, KARMEN and MiniBooNE experiments Phys.Rev.D83:015015,2011. arXiv: 1009.5536 QFTHEP-20114V.A.Duk, INR RAS

5 Neutrino oscillations: LSND QFTHEP-20115V.A.Duk, INR RAS

6 Neutrino oscillations: KARMEN QFTHEP-20116V.A.Duk, INR RAS

7 Neutrino oscillations: MiniBooNE, neutrino mode QFTHEP-20117V.A.Duk, INR RAS

8 Neutrino oscillations: MiniBooNE, anineutrino mode QFTHEP-20118V.A.Duk, INR RAS Above 475 MeV: Event excess 475-1250 MeV: 20.9±14.0 475-3000 MeV: 24.7±18.0 Below 475 MeV: Event excess 200-475 MeV: 18.5±14.3

9 LSND/KARMEN/MiniBooNE anomalies: summary QFTHEP-20119V.A.Duk, INR RAS

10 Possible explanation of experimental results (S.Gninenko, INR RAS) QFTHEP-201110V.A.Duk, INR RAS Origin of excess

11 Possible explanation (S.N.Gninenko) New weakly interacting particle ν h : Produced in NC Mixing with ν μ ( must be in CC, e.g. kaon decays) or separate vertex (may be in NC only) Decays radiatively via μ tr QFTHEP-201111V.A.Duk, INR RAS

12 Properties of a new particle ν h m > 40 MeV: no event excess in KARMEN (threshold effect) m 80MeV τ(ν h ) > 10 -11 sec: from LEP constraints: BR(Z→νν h ) x BR(ν h → ν γ) < 2.7 x 10 -5 τ(ν h ) < 10 -9 sec: ν h ‘s decay within MiniBooNE detector volume 10 -3 < |U μh | 2 < 10 -2 : from event excess in MiniBooNE experiment QFTHEP-201112V.A.Duk, INR RAS

13 New weakly interacting particle ν h QFTHEP-2011 Decays mostly as ν h →νγ 40 MeV < m (ν h ) < 80 MeV 10 -3 < |U μh | 2 < 10 -2 10 -11 sec < τ(ν h ) < 10 -9 sec 13V.A.Duk, INR RAS

14 ν h : limits from pion and kaon decays QFTHEP-201114V.A.Duk, INR RAS Muon energy in 2-body kaon decay

15 Search for ν h in kaon decays QFTHEP-2011 K→μν h : peak in E μ (cms) background from K→μν μ insensitive to low masses of ν h because of resolution K→μν h, ν h →ν γ: peak in E μ (cms) signature the same as for K→ µ ν γ no background from K→μν μ sensitive to low masses of ν h secondary decay vertex Suitable for ISTRA+ Muon energy in 2-body kaon decay 15V.A.Duk, INR RAS

16 ISTRA+ collaboration QFTHEP-2011  Institute for High Energy Physics, Protvino (IHEP)  Institute for Nuclear Research, Moscow (INR)  Joint Institute for Nuclear Research, Dubna (JINR) ISTRA+ 16V.A.Duk, INR RAS

17 ISTRA+ setup C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscope QFTHEP-2011 T 0 =S1. S2. S3. S4. C0. C1. C2. S5 (prescaled by a factor of ~10) T 1 =T 0. (∑SP1 > MIP) 17V.A.Duk, INR RAS

18 ISTRA+ setup: beam part C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscope QFTHEP-2011 T 0 =S1. S2. S3. S4. C0. C1. C2. S5 (prescaled by a factor of ~10) T 1 =T 0. (∑SP1 > MIP) 18V.A.Duk, INR RAS

19 ISTRA+ setup: decay volume C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscope QFTHEP-2011 T 0 =S1. S2. S3. S4. C0. C1. C2. S5 (prescaled by a factor of ~10) T 1 =T 0. (∑SP1 > MIP) vacuum He 19V.A.Duk, INR RAS

20 ISTRA+ setup: magnetic spectrometer C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscope QFTHEP-2011 T 0 =S1. S2. S3. S4. C0. C1. C2. S5 (prescaled by a factor of ~10) T 1 =T 0. (∑SP1 > MIP) 20V.A.Duk, INR RAS

21 ISTRA+ setup: ECAL, HCAL C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscope QFTHEP-2011 T 0 =S1. S2. S3. S4. C0. C1. C2. S5 (prescaled by a factor of ~10) T 1 =T 0. (∑SP1 > MIP) 21V.A.Duk, INR RAS

22 K→µν h (ν h →νγ) event reconstruction: primary and secondary vertex for signal QFTHEP-2011 K K μ μ νμνμ ν γ γνhνh A A B B P γ calculated using A, B P γ calculated using A, B: additional energy smearing E νh ~ 240 MeV, m νh ~ 40–80 MeV smearing not crucial 22V.A.Duk, INR RAS

23 K→µν h (ν h →νγ): primary and secondary vertices QFTHEP-2011 Z νh - Z K (Z νh – Z K )/(Z ECAL – Z K ) τ =10 -11 sec τ =10 -10 sec τ =10 -9 sec τ =10 -10 sec τ =10 -11 sec dz, cm 23V.A.Duk, INR RAS

24 K→µν h (ν h →νγ): E γ smearing QFTHEP-2011 τ=10 -11 secτ=10 -10 secτ=10 -9 sec dE, GeV dE = E true - E measured 24V.A.Duk, INR RAS

25 K→µν h (ν h →νγ): kinematics in kaon rest frame QFTHEP-2011 νhνh ν γ μ E νh ~ 240 MeV, m νh ~ 40–80 MeV E γ > 50 MeV kaon decay vertex P γ : kaon rest frame P* γ : ν h rest frame θ – (γ-ν h ) angle cos θ μγ ~ (-1) peak sharper for smaller m h 25V.A.Duk, INR RAS * general case assumed isotropic *

26 K→µν h (ν h →νγ) event selection: K→µνγ signature Track requirements (one primary track, one secondary track, cuts on track quality) Veto requirements (no signals above threshold) Vertex requirements (400 < z < 1600 cm, cut on vertex fit probability) Particle ID : Photon: isolated shower in ECAL Muon: 1) MIP in ECAL 2) ADC sum in HCAL < 200 3) relative energy deposition in last 3 layers of HCAL > 0.05 QFTHEP-201126V.A.Duk, INR RAS

27 K→µνγ : decay rate and kinematical variables QFTHEP-2011 Kinematical variables: x=2*E γ (cms)/M k y=2*E µ (cms)/M k 3 main terms: IB – dominant SD±, INT± - most interesting (→ F v, F A ) x y IB Dalits-plot 27V.A.Duk, INR RAS

28 K→µν h (ν h →νγ): background rejection and signal observation Main background: K→ µ ν γ (Kµ2γ) K→ µ ν π 0 (Kµ3) with 1 gamma lost (from π 0 →γγ) K→ π π 0 (Kπ2) with 1 gamma lost (from π 0 →γγ) and π misidentification Signal observation: peaks in y and cos θ μγ where θ μγ is the angle between p µ and p γ in kaon rest frame. θ μγ peaks at (-1) for signal Background rejection procedure: scanning over (y, x) Dalits-plot and looking for a peak in cos θ μγ QFTHEP-201128V.A.Duk, INR RAS

29 K→µν h (ν h →νγ): (y, x) Dalits plot QFTHEP-2011 Kµ2γ (MC) Kµ3 (MC) Kπ2 (MC) X X X Y signal (MC) X Y 29V.A.Duk, INR RAS data X X Y YY main background: Kπ2

30 K→µν h (ν h →νγ): signal extraction (y, x) dalits-plot is divided into stripes with Δx=0.05 width (x- stripes) cut on y is put in each x-stripe: 1 < y < 1.2 Simultaneous fit of y and cos θ μγ is done in x-stripes QFTHEP-2011 X y signal (MC) 7 x-stripes selected for further analysis in the following region: 1 < y < 1.2 0.2 < x < 0.55 30V.A.Duk, INR RAS

31 Possible signature for ν h in x-stripes; |U µh | 2 =0.01, m=60 MeV, τ =10 -10 sec QFTHEP-2011 Stripe 1: 0.2 < x < 0.25 Stripe 4: 0.35 < x < 0.4 Stripe 7: 0.5 < x < 0.55 cos θ µγ Y Y Y 31V.A.Duk, INR RAS magenta: signal green: K→µνγ blue: Kμ3 red: Kπ2 peak sharper for large x

32 Possible signature for different masses of ν h ; |U µh | 2 =0.01, τ =10 -10 sec QFTHEP-2011 m=80 MeVm=60 MeV m=40 MeV cos θ µγ 32V.A.Duk, INR RAS peak sharper for small m h

33 Possible signature for different lifetimes of ν h ; |U µh | 2 =0.01, m=60 MeV QFTHEP-2011 τ =10 -9 sec τ =10 -10 sec τ =10 -11 sec cos θ µγ 33V.A.Duk, INR RAS peak sharper for large τ h

34 Signal efficiency QFTHEP-2011 m h τ(lab) because of Lorentz boost low efficiency for small m h 2 effects m h E(cms) cut on y (y>1) kills signal 34V.A.Duk, INR RAS τ =10 -9 sec τ =10 -11 sec τ =10 -10 sec m νh, MeV

35 K→µν h (ν h →νγ): simultaneous fit in x-stripes QFTHEP-2011 fitting cos θ μγ and y simultaneously is more reliable Signal and background shapes taken from MC magenta – signal, green – Kμ2γ, blue – Kμ3, red – Kπ2 0.4 < x < 0.45 0.3 < x < 0.35 35V.A.Duk, INR RAS Y cos θ µγ Y

36 |U µh | 2 calculation BR(ν h ) measured from BR(ν h )/BR(Kμ2γ) BR(Kμ2) taken from PDG BR(Kμ2γ) taken from theory f(m h ) contains chirality flip and phase space factors QFTHEP-2011 blue (chirality flip): 1+(m h /m μ ) 2 red (total): f(m h, m μ ) f(m h, m µ ) f = 1.1 – 1.5 m νh, GeV 36V.A.Duk, INR RAS

37 |U µh | 2 calculation |U µh | 2 is calculated for each x-stripe N exp (ν h )/ N mc (ν h ) obtained from simultaneous fit Values |U µh | 2 for x-stripes are averaged Upper limit is set for averaged |U µh | 2 QFTHEP-201137V.A.Duk, INR RAS

38 Averaging |U µh | 2 QFTHEP-2011 |U µh | 2 = (6.6 ± 3.9)*10 -6 m=50 MeV, τ =10 -10 sec X |U µh | 2 38V.A.Duk, INR RAS |U µh | 2 X 1σ interval

39 |U µh | 2 for τ=10 -9, 10 -10 and 10 -11 sec QFTHEP-201139V.A.Duk, INR RAS |U µh | 2 m νh, MeV τ=10 -9 τ=10 -10 τ=10 -11 effect does not exceed 2σ

40 Main sources of systematics Fit (shape) systematics bin size in cos histogram x-stripe width (bin size in the final fit) Cut on x (number of x-stripes in the final fit) Cut on y in x-stripes (study in progress) QFTHEP-201140V.A.Duk, INR RAS

41 Main sources of systematics Fit (shape) systematics bin size in cos histogram x-stripe width (bin size in the final fit) Cut on x (number of x-stripes in the final fit) Cut on y in x-stripes (study in progress) QFTHEP-201141V.A.Duk, INR RAS

42 Fit (shape) systematics MC shape is not perfect Errors of simultaneous fit scaled to χ 2 =1 New |U µh | 2 has larger error Additional error is treated as shape systematics Dominant source QFTHEP-201142V.A.Duk, INR RAS m = 80 MeV τ = 10 -10 sec x |U µh | 2 |U µh | 2 = (0.9 ± 0.5)*10 -5 |U µh | 2 = (0.7 ± 0.8)*10 -5 |U µh | 2 x

43 Main sources of systematics Fit (shape) systematics bin size in cos histogram x-stripe width (bin size in the final fit) Cut on x (number of x-stripes in the final fit) Cut on y in x-stripes (study in progress) QFTHEP-201143V.A.Duk, INR RAS

44 Bin size in simultaneous (cos histogram) and final (x-stripe width) fits Varying bin size in cos histogram: results are compatible Varying x-stripe width: results are compatible No systematics found QFTHEP-201144V.A.Duk, INR RAS

45 Main sources of systematics Fit (shape) systematics bin size in cos histogram x-stripe width (bin size in the final fit) Cut on x (number of x-stripes in the final fit) Cut on y in x-stripes (study in progress) QFTHEP-201145V.A.Duk, INR RAS

46 Systematics of a cut on x Varying number of stripes in the final fit Fitting dependency of |U µh | 2 on x slope multiplied by stripe width gives error estimation ε syst < 0.2 ε stat QFTHEP-201146V.A.Duk, INR RAS x-stripe number |U µh | 2

47 Setting UL on |U µh | 2 QFTHEP-201147V.A.Duk, INR RAS upper line – total error bottom line – statistical error only τ=10 -11 τ=10 -10 τ=10 -9 UL (95% C.L.) m νh, MeV

48 Comparison with Gninenko’s prediction QFTHEP-2011 blue stripe: predictions from LSND, KARMEN. MiniBoonE Black line: ISTRA+ upper limit @ 95% C.L. 48V.A.Duk, INR RAS m νh, MeV |U µh | 2

49 Preliminary results |U µh | 2 < (4-6) x 10 -5 (95% CL) for τ=10 -9 sec |U µh | 2 < (1-2) x 10 -5 (95% CL) for τ=10 -10 sec |U µh | 2 < (1.5-2) x 10 -5 (95% CL) for τ=10 -11 sec More detailed scan of (m, τ) and study of systematics is in progress QFTHEP-201149V.A.Duk, INR RAS

50 conclusions Heavy sterile neutrino ν h is proposed for LSND/KARMEN/MiniBoone anomaly explanation: 40 MeV < m(ν h ) < 80 MeV, 10 -11 sec < τ(ν h ) < 10 -9 sec, 10 -3 < |U μh | 2 < 10 -2 ν h can be effectively searched for in kaon decay K→µν h (ν h →νγ) First preliminary limits on |U µh | 2 are obtained from K‾→ µ‾ ν γ decay at ISTRA+ setup: |U µh | 2 < (4-6) x 10 -5 (95% CL) for τ=10 -9 sec |U µh | 2 < (1-2) x 10 -5 (95% CL) for τ=10 -10 sec |U µh | 2 < (1.5-2) x 10 -5 (95% CL) for τ=10 -11 sec more detailed study is in progress QFTHEP-201150V.A.Duk, INR RAS

51 QFTHEP-201151V.A.Duk, INR RAS THANK YOU!

52 Back-up slides QFTHEP-201152V.A.Duk, INR RAS

53 LSND: oscillation interpretation QFTHEP-201153V.A.Duk, INR RAS

54 Neutrinos in LSND and KARMEN QFTHEP-201154V.A.Duk, INR RAS

55 Full list of cuts QFTHEP-201155V.A.Duk, INR RAS

56 General formula for decay rate QFTHEP-201156V.A.Duk, INR RAS Taken from: D.Gorbunov, M.Shaposhnikov. JHEP 0710:015,2007

57 (х, cosθ μγ ) correlations QFTHEP-2011 τ=10 -9 sec τ=10 -11 sec m=40MeV m=80MeV Kπ2Kπ2Kμ3Kμ3 cos θ ~ 1/E γ for large ν h mass (similar to π 0 ) х х х х х х cosθ μγ 57V.A.Duk, INR RAS


Download ppt "Search for heavy neutrino in K‾→ µ‾ ν γ decay at ISTRA+ setup Viacheslav Duk, INR RAS ISTRA+ collaboration ISTRA+ IHEP U-70 (Protvino, Russia)"

Similar presentations


Ads by Google