Download presentation
Presentation is loading. Please wait.
Published byJody Ferguson Modified over 9 years ago
1
Back to the Story of Lanna Loaner Lanna Loaner has just graduated from College with a debt of $51,596 Of course student loan programs don’t expect Lanna to pay off her loan on graduation day. –They’ll have her pay it off over the next say 5 years in monthly installments –Lets also say the interest rate changes to 8% with monthly compounding.
2
Step #1 in Problem Solving Let pick the perspective for the story problem. (We have the bank that has money loaned out and is going to collect payments - or we have Lanna). This time I’m going to pick the banks perspective (I could make it work either way)
3
Drawing Pretty Pictures 0 1 2 3 4 5 6 7 8 9 10 This time I’m going to sweep all the money into a pot at year #5. (Partially because I’ve already done half the problem and I’m lazy).
4
What I already Know 0 1 2 3 4 5 6 7 8 9 10 If I sweep all that money the bank loaned forward to year 5, it is equal to the bank having $51,596 dollars out on loans.
5
New Picture 5 5y 1m ---------------------------------------------------------------- 10y -$51,956 I have to get my banker paid back over a period of 60 equal payments with 8% interest compounding monthly.
6
Magic Number Come Out and Play I need magic number that will sweep these future payments of unknown size, back into my money pot. Two Observations I have 60 numbers to be swept back - if I have to do 60 P/F magic numbers I’m going to puke I don’t know how big these 60 numbers are.
7
Equal Payments Have a Special Name Annuity An annuity is a series of equal payments Common occurrences of this type of cash flow –Mortgage Payments –Payments out of Retirement Funds –Engineers projecting the same earnings from their project year after year.
8
Enter a New Super Hero A/P A/P stands for an Annuity –who's Present Value A/P * Present Value = –An Annuity with the same –total value
9
What do I know I know I have a banker who is out $51,596. How much money do I have to sweep back into his pot before he is going to be happy? Because I’m not paying him off on graduation day - I’ll have to sweep the money back with interest I have a present value –$51,596 * A/P = size of those annuity payments
10
OK, Now I Have Everything but the Stupid Formula for A/P A/P i, n = {( i * [ 1 + i ] n )/( [ 1 + i ] n - 1) } This sounds like a formula to put in a spread sheet or to save in a calculator so that nimble fingers can’t punch it in wrong I didn’t do a derivation of the formula Thing I remember most about that derivation was that I never wanted to see it again Look at the Formula and Say “I Believe”!
11
Ok - It’s a really cool formula but what does it all mean i is the interest rate –Oh that’s not so bad –We know the interest rate will be 8% per year after her graduation BUT We ALSO know that after she graduates the banker is going to ream her one - its compounding monthly –8%/12 months/year =.667%/month –i is equal to 0.00667
12
More Coolness with the Formula n is the number of payments and –the number of compounding periods In this case Lanna will make –monthly payments for 5 years or –60 payments n = 60 Plug and Crank –A/P i, n = {( 0.00667 * [ 1 + 0.00667 ] 60 )/( [ 1 + 0.00667 ] 60 - 1) } = 0.0202783
13
Turning on our Sweeper 5 5y 1m ---------------------------------------------------------------- 10y -$51,956 $51,956 * 0.0202783 = $1046.28/month
14
Observations About A/P A/P is sometimes called a capital recovery factor In many problems you will have an initial capital outlay. –If you multiply this initial outlay by the A/P factor it tells you how big the payments will have to be starting with the next compounding period to pay back the capital
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.