Download presentation
Presentation is loading. Please wait.
Published byVictoria Stafford Modified over 9 years ago
2
DM Models & Signatures in CMS searches Analyzing CMS data MonoJet, MonoLepton, MonoPhoton, MonoTop, Top pairs SUSY Searches Perspectives for LHC Run 2 OUTLINE 2
3
Introduction 3
4
DM models in CMS searches Most of the CMS DM searches use Effective Field Theories : ⇒ MonoJet, MonoLepton, MonoPhoton, Top pair Validity: M V >> √s = O(10 TeV) Search parameters : cut-off scale ; DM mass m Operators : probe spin-(in)dependent interactions 4
5
5 ISR jet/photon Mono-jet/photon Recoiling W Mono-lepton Single top Mono-top DM Production in Colliders
6
MonoJet : event selection Jet p T >110 & | |<2.4 p T fractions : ch. had. ≥ 20% & neutr. had. ≤ 70% & photons ≤ 70% Accept 2 nd jet ( p T >30 & | |<4.5 & D J1J2 <2.5 ) ; Veto 3 rd jet (p T, ) MET ≡ Missing Transverse Energy = Vectorial sum of the visible objects 7 MET Regions : MET > {250, 300, 350, 400, 450, 500, 550} GeV Lepton veto : e/m(p T >10 & R iso <0.2) t(p T >20 & |h|<2.3) Kill QCD, ttbar Kill V, VV, top 6
7
MonoJet : signal extraction Single-bin counting experiment after optimal MET cut Z Wjets are estimated using +jets and cross checked with Z-> . 7
8
MonoJet : results Vector coupling Spin-independent interaction Axial-Vector coupling Spin-dependent interaction 8 CDMS excess CMS PAS EXO-12-048
9
MonoLepton Advantages : clean leptonic signature less background @ LHC easier to trigger than monojet/monophoton Interferences sensitive to different couplings for Up- and Down- type quarks Largest for =-1 M > 100 GeV steep drop (limited -space) ”edge” depends on . Shape m T depends on ! Master variable transverse mass m T 9
10
MonoLepton : event selection : ID & R iso 45 & p T <30% Veto 2 nd (p T >25) kill cosmics & DY e : ID & A iso 100 & IsoCalo<3% Veto 2 nd e (pT>35) kill DY Back-to-back lepton and MET 0.4 < pT(l) / MET < 1.5 > 2.5 10
11
Major backgrounds = MC x SF from data High mT tail : fit m T shape analysis : multi-bin counting 11 MonoLepton : signal extraction
12
MonoLepton : results 12 CMS PAS EXO-12-060 Axial-Vector coupling Spin-dependent interaction Vector coupling Spin-independent Interaction Comparable to monojet reach
13
MonoPhoton : event selection Kill +jet 13 MET > 140 (MET, ) > 2.0 “MET ID” : 2 fit using unclustered energy remove fake MET Lepton veto : ≥1 isolated lepton R iso < 0.2 (e) / 0.1 ( ) Kill W(l )+ Photon : E T > 145 GeV & | |<1.44 (purity) ID : H/E < 0.05 & ECAL energy deposit’s shape Anomalous signals removal, timing cut (BX±3ns) PF isolation : surrounding h ±,0 and photons Fake photons from electrons removed
14
MonoPhoton : signal extraction Single-bin counting experiment after p T ( ) cut Major backgrounds = MC x SF from data Beam halo timing distribution in data 14
15
MonoPhoton : results 15 CMS PAS EXO-12-047
16
Top Pairs & MonoTop Heavy quarks enhance sensitivity to scalar interactions Two possible final states : Signatures: 1. Large MET + 2 leptons + ≥2 Jets @low pT 2. Large MET + 1 lepton Top pairs MonoTop Probe couplings that favor heavy quarks FCNC diagrams with new particle in the final state Search for scalar & vector DM particle Signature : t bW(qq) 1 b-jet + 2 jets + MET 16
17
Top Pairs dileptonic Leptons : R iso 20 ; | | < 2.4 ( ), 2.5 (e) Leptons : m L1L2 >20 ; m ll = m Z ± 15 GeV ; scalar pT sum > 120 ; <2 Jets : ≥2 Jets pT>30 & |h|<5 & loose ID Jets : scalar pT sum < 400 MET > 320 Irreducible backgrounds = MC x SF from data tt, t, DY, VV Fakes : 1 or 2 mis-ID lepton(s) Fit (S,B) to data 17 CMS PAS B2G-13-004
18
Top Pairs semileptonic 1 Lepton : R iso 30 ; | | < 2.1 ( ), 2.5 (e) Jets : ≥3 Jets pT>30 & | |<4 & loose ID & ≥1 b-jet Jets/MET : (Jet1+Jet2, MET) > 1.2 MET>320 GeV & m T >160 GeV & m T2 W (W decay kinematics)>200 GeV All backgrounds = MC x SF from data Fit (S,B) to data q1q1 q2q2 18 CMS PAS B2G-14-004
19
Top Pairs : results Semileptonic Dileptonic 19
20
MonoTop : event selection 2 jets pT>60, 3 rd jet pT>40 ; m3j<250 ; 1 b-jet ; all jets : |eta|<2.4 4 th jet veto : pT > 35 Lepton veto : pT>10(20) m(e) ; |h|<2.4(2.5) m(e) ; Riso ≤ 2 MET > 350 20 CMS PAS B2G-12-022, arXiv:1410.1149, submitted to PRL
21
MonoTop : results 21 CMS PAS B2G-12-022
22
SUSY Searches 22 CMS PAS SUS-13-020
23
23 pMSSM Interpretations DCS stands for Direct CMS Search No astrophysical data included NB, absolute distributions strongly depend on the choice of priors
24
24 CMS data slightly prefer lower densities and heavier WIMP. Relic density and WIMP mass = Xsec coefficient Z = signed Bayesian analog of the frequentist “n-sigma” Z > 5 means discovery Z < -1.64 means exclusion at 95% CL Relic densityNeutralino mass
25
Summary CMS covers already a broad panel of final states, with sensitivities to various scenarios So far, no new signal observed Upper limits on the production cross sections between 10 -1 and 10 -2 pb Upper limits on -nucleon interaction cross sections between 10 -38 and 10 -42 cm 2 Collider results mainly limits below M < 10 GeV 25
26
Perspectives for LHC Run 2 Running conditions : 13 TeV, 25 ns, = 40 expect factor 4 in rate Need to optimise X+MET triggers to cope with such conditions Refine background estimations and reduce associated uncertainties Physics models : EFT validity is an important limitation to current searches switch to simplified models with extra search parameters wrt EFT searches 26
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.