Download presentation
Presentation is loading. Please wait.
Published byEmerald Shelton Modified over 9 years ago
1
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics §4.4 Exp & Log Applications
2
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 2 Bruce Mayer, PE Chabot College Mathematics Review § Any QUESTIONS About §4.3 → Exp & Log Derivatives Any QUESTIONS About HomeWork §4.3 → HW-20 4.3
3
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 3 Bruce Mayer, PE Chabot College Mathematics §4.4 Learning Goals Use exponential and logarithmic derivatives in curve sketching Examine applications involving exponential models
4
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 4 Bruce Mayer, PE Chabot College Mathematics Summary of Log Rules Solving Logarithmic Equations Often Requires the Use of Logarithms Laws For any positive numbers M, N, and a with a ≠ 1, p a whole number
5
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 5 Bruce Mayer, PE Chabot College Mathematics Typical Log-Confusion Beware Beware that Logs do NOT behave Algebraically. In General:
6
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 6 Bruce Mayer, PE Chabot College Mathematics Exponent↔Logarithm Duality Some Important Implications of the Properties of Logs & Exponents
7
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 7 Bruce Mayer, PE Chabot College Mathematics Alternative Graph: Swap x & y It will be helpful in later work to be able to graph an equation in which the x and y in y = a x are interchanged Note that y = u x and y = log u x are Mirror images Mirror Line
8
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 8 Bruce Mayer, PE Chabot College Mathematics MATLAB Code MATLAB Code % Bruce Mayer, PE % MTH-15 18Jul13 % XYfcnGraph6x6BlueGreenBkGndTemplate1306.m % ref: % % The Limits xmin = -6; xmax = 6; ymin = -6; ymax = 6; % The FUNCTION x = linspace(xmin,xmax,1000); x1=x; y1=2.3.^x; x2=y1; y2=x; x3=x; y3=x; % % The ZERO Lines zxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green plot(x1,y1, x2,y2, 'LineWidth', 4),axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}x, x = 2.3^y'), ylabel('\fontsize{14}y = 2.3^x, y '),... title(['\fontsize{16}MTH15 y=2.3^x & x = 2.3^y ',]),... annotation('textbox',[.51.05.0.1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'Bruce Mayer, PE 18Jul13','FontSize',7) hold on plot(x3,y3, '--m', zxv,zyv, 'k', zxh,zyh, 'k', 'LineWidth', 2) set(gca,'XTick',[xmin:1:xmax]); set(gca,'YTick',[ymin:1:ymax])
9
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 9 Bruce Mayer, PE Chabot College Mathematics Recall: Better Graphing GamePlan 1.Find THE y-Intercept, if Any a.Set x = 0, find y b.Only TWO Functions do NOT have a y-intercepts –Of the form 1/x –x = const; x ≠ 0 2.Find x-Intercept(s), if Any a.Set y = 0, find x b.Many functions do NOT have x-intercepts
10
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 10 Bruce Mayer, PE Chabot College Mathematics Better Graphing GamePlan 3.Find VERTICAL (↨) Asymptotes, If Any a.Exist ONLY when fcn has a denom b.Set Denom = 0, solve for x –These Values of x are the Vertical Asymptote (VA) Locations 4.Find HORIZONTAL (↔) Asymptotes (HA), If Any a.HA’s Exist ONLY if the fcn has a finite limit-value when x→+∞, or when x→−∞
11
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 11 Bruce Mayer, PE Chabot College Mathematics Better Graphing GamePlan b.Find y-value for: –These Values of y are the HA Locations 5.Find the Extrema (Max/Min) Locations a.Set dy/dx = 0, solve for x E b.Find the corresponding y E = f(x E ) c.Determine by 2 nd Derivative, or ConCavity, then test whether (x E, y E ) is a Max or a Min –See Table on Next Slide
12
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 12 Bruce Mayer, PE Chabot College Mathematics Better Graphing GamePlan –Determine Max/Min By Concavity 6.Find the Inflection Pt Locations a.Set d 2 y/dx 2 = 0, solve for x i b.Find the corresponding y i = f(x i ) c.Determine by 3 rd Derivative test The Inflection form: ↑-↓ or ↓-↑
13
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 13 Bruce Mayer, PE Chabot College Mathematics Better Graphing GamePlan 7.Find the Inflection Pt Locations a.Set d 2 y/dx 2 = 0, solve for x i b.Find the corresponding y i = f(x i ) c.Determine by 3 rd Derivative test The Inflection form: ↑-↓ or ↓- ↑ –Determine Inflection form by 3 rd Derivative
14
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 14 Bruce Mayer, PE Chabot College Mathematics Better Graphing GamePlan 8.Sign Charts for Max/Min and ↑-↓/↓-↑ a.To Find the “Flat Spot” behavior for dy/dx = 0, when d 2 y/dx 2 exists, but [d 2 y/dx 2 ] xE = 0 use the Direction-Diagram abc −−−−−−++++++−−−−−−++++++ x Slope df/dx Sign Critical (Break) Points MaxNO Max/Min Min
15
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 15 Bruce Mayer, PE Chabot College Mathematics Better Graphing GamePlan 9.Sign Charts for Max/Min and ↑-↓/↓-↑ a.To Find the ↑-↑ or ↓-↓ behavior for d 2 y/dx 2 = 0, when d 3 y/dx 3 exists, but [d 3 y/dx 3 ] xi = 0 use the Dome-Diagram abc −−−−−−++++++−−−−−−++++++ x ConCavity Form d 2 f/dx 2 Sign Critical (Break) Points InflectionNO Inflection Inflection
16
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 16 Bruce Mayer, PE Chabot College Mathematics Example Exp Inoculation In a researcher’s model, inoculating x individuals to a virus suggests kPeople will become infected as Where a & b are Constants Find a.If there are 5000 thousand susceptible individuals in the population, then find the values of constants a and b.
17
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 17 Bruce Mayer, PE Chabot College Mathematics Example Exp Inoculation b.How many individuals become infected when 2000 are inoculated? SOLUTION a. 5000 susceptible individuals could imply that the point (0,5) should be on the graph of the function (no individuals inoculated means all get sick). It also means that if everyone is inoculated, nobody should get sick. In other words, (5,0) is on the graph.
18
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 18 Bruce Mayer, PE Chabot College Mathematics Example Exp Inoculation Using (x,I) = (0,5) Now Use (5,0) But From Before Substituting
19
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 19 Bruce Mayer, PE Chabot College Mathematics Example Exp Inoculation Doing the algebra
20
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 20 Bruce Mayer, PE Chabot College Mathematics Example Logistic Curve A version of the “Logistic Function” → Determine where the fcn is increasing & decreasing and where its graph is concave Up & concave Down. Sketch the graph of the function. Show as many key features as possible high and low points, points of inflection, vertical/horizontal asymptotes, intercepts, cusps, vertical tangents
21
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 21 Bruce Mayer, PE Chabot College Mathematics Example Logistic Curve SOLUTION: Finding intervals of increase and decrease (along with any relative extrema) can be accomplished using the derivative. First, rewrite the function in a form avoids the quotient rule Then
22
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 22 Bruce Mayer, PE Chabot College Mathematics Example Logistic Curve Note that df/dx is always positive (each factor is always positive), so the original function is increasing on its entire domain. This also implies that the function has NO relative extrema. Now find intervals on which the function is concave up or concave down. This requires the use of the second derivative.
23
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 23 Bruce Mayer, PE Chabot College Mathematics Example Logistic Curve Taking the Second Derivative
24
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 24 Bruce Mayer, PE Chabot College Mathematics Example Logistic Curve Concavity changes at Inflection-Points when the 2 nd Derivative equals Zero Because the first two factors are always NonZero, the equation reduces to Now chk the sign of the 2 nd derivative on either side of 0, at x = −1 & x = 1
25
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 25 Bruce Mayer, PE Chabot College Mathematics Example Logistic Curve The Sign Tests The Sign Chart (Dome-Diagram 101 −−−−−−++++++ x ConCavity Form d 2 f/dx 2 Sign Critical Point Inflection
26
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 26 Bruce Mayer, PE Chabot College Mathematics Example Logistic Curve The 2 nd Derivative function is Concave UP for all real no.s less than 0 Concave DOWN for all real no.s greater than 0. Because the graph changes concavity at x = 0, an inflection point exists at his location. Next investigate asymptotes.
27
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 27 Bruce Mayer, PE Chabot College Mathematics Example Logistic Curve Because the function has no errors (Div-by-Zero) in its domain, conclude that there are NO vertical asymptotes Letting x→±∞ reveals TWO horizontal Asymptotes Thus Have Horizontal Asymptotes at –y = 0 –y = 5
28
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 28 Bruce Mayer, PE Chabot College Mathematics Example Logistic Curve Check for y-intercept at x = 0 Have y-intercept at (0, 2.5) Check for x-intercept at y = 0 This CONTRADICTION (5=0) means that there is NO soln to the eqn, and thus NO x-intercepts exist
29
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 29 Bruce Mayer, PE Chabot College Mathematics Example Logistic Curve
30
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 30 Bruce Mayer, PE Chabot College Mathematics Example Logistic Curve Graphically Horizontal Asymptotes Inflection Point
31
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 31 Bruce Mayer, PE Chabot College Mathematics Example Marginal Inoculation Consider the inoculation function from the Previous Example Use marginal/incremental analysis to estimate the change in the number of infected individuals when increasing the number of inoculated person from 1000 to 1010
32
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 32 Bruce Mayer, PE Chabot College Mathematics Example Marginal Inoculation SOLUTION: ReCall Marginal analysis is the process of using the derivative to predict change in a function in the short run. Recall that for a function f(x), value a, and small number ∆x; to Whit: In this case with x in kPeople, estimate:
33
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 33 Bruce Mayer, PE Chabot College Mathematics Example Marginal Inoculation
34
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 34 Bruce Mayer, PE Chabot College Mathematics Example Marginal Inoculation Now du/dx BackSub e u = 0.9 x & du/dx = ln(0.9)
35
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 35 Bruce Mayer, PE Chabot College Mathematics Example Marginal Inoculation
36
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 36 Bruce Mayer, PE Chabot College Mathematics WhiteBoard Work Problems From §4.4 P36 → Marginal Analysis Special Prob → Sketch Log Fcn
37
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 37 Bruce Mayer, PE Chabot College Mathematics All Done for Today Finding Pwr Fcn by Log-Log
38
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 38 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics Appendix –
39
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 39 Bruce Mayer, PE Chabot College Mathematics ConCavity Sign Chart abc −−−−−−++++++−−−−−−++++++ x ConCavity Form d 2 f/dx 2 Sign Critical (Break) Points InflectionNO Inflection Inflection
40
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 40 Bruce Mayer, PE Chabot College Mathematics
41
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 41 Bruce Mayer, PE Chabot College Mathematics
42
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 42 Bruce Mayer, PE Chabot College Mathematics
43
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 43 Bruce Mayer, PE Chabot College Mathematics
44
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 44 Bruce Mayer, PE Chabot College Mathematics
45
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 45 Bruce Mayer, PE Chabot College Mathematics
46
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 46 Bruce Mayer, PE Chabot College Mathematics
47
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 47 Bruce Mayer, PE Chabot College Mathematics
48
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 48 Bruce Mayer, PE Chabot College Mathematics
49
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 49 Bruce Mayer, PE Chabot College Mathematics
50
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 50 Bruce Mayer, PE Chabot College Mathematics P4.4-36 Graph
51
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 51 Bruce Mayer, PE Chabot College Mathematics MATLAB Code MATLAB Code % Bruce Mayer, PE % MTH-15 19Jul13 % XYfcnGraph6x6BlueGreenBkGndTemplate1306.m % % The Limits xmin = 0; xmax = 500; ymin = 0; ymax = 1600; % The FUNCTION x = linspace(xmin,xmax,1000); y = 1000*exp(-x/50).*(x-125); % % The ZERO Lines zxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green plot(x,y, 'LineWidth', 4),axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = 1000e^-^x^/^5^0(x-125)'),... title(['\fontsize{16}MTH15 P4.4-36',]),... annotation('textbox',[.67.81.0.1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'Bruce Mayer, PE 19JUl13','FontSize',7) hold on set(gca,'XTick',[xmin:50:xmax]); set(gca,'YTick',[ymin:200:ymax])
52
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 52 Bruce Mayer, PE Chabot College Mathematics Example Graph Use Graphing GamePlane 1.Find y-intercept if it exists 2.Find any x-intercept(s) 3.Use Denom→0 to Check for Vertical Asymptote(s) 4.Use Denom→∞ to Check for Horizontal Asymptote(s) 5.Find max/min pts by dy/dx = 0
53
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 53 Bruce Mayer, PE Chabot College Mathematics Example Graph Use Graphing GamePlane 6.Find Inflection Points by [d 2 y/(dx) 2 ] = 0 7.Check form of inflection points using 3 rd Derivative Test [d 3 y/(dx) 3 ] InflPts
54
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 54 Bruce Mayer, PE Chabot College Mathematics
55
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 55 Bruce Mayer, PE Chabot College Mathematics MATLAB Code MATLAB Code % Bruce Mayer, PE % MTH-15 18Jul13 % XYfcnGraph6x6BlueGreenBkGndTemplate1306.m % % The Limits xmin = 0; xmax = 20; ymin = 0; ymax = 4; % The ZERO Lines zxh = [xmin xmax]; zyh = [0 0]; zxv = [.05.05]; zyv = [ymin ymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); plot(zxv,zyv, 'k', zxh,zyh, 'k', 'LineWidth', 2),axis([xmin xmax ymin ymax]),... grid, annotation('textbox',[.68.82.0.1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'Bruce Mayer, PE 18Jul13','FontSize',7) set(gca,'XTick',[xmin:2:xmax]); set(gca,'YTick',[ymin:0.5:ymax])
56
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 56 Bruce Mayer, PE Chabot College Mathematics
57
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 57 Bruce Mayer, PE Chabot College Mathematics
58
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 58 Bruce Mayer, PE Chabot College Mathematics
59
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 59 Bruce Mayer, PE Chabot College Mathematics
60
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 60 Bruce Mayer, PE Chabot College Mathematics
61
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 61 Bruce Mayer, PE Chabot College Mathematics
62
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 62 Bruce Mayer, PE Chabot College Mathematics
63
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 63 Bruce Mayer, PE Chabot College Mathematics
64
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 64 Bruce Mayer, PE Chabot College Mathematics
65
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 65 Bruce Mayer, PE Chabot College Mathematics
66
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 66 Bruce Mayer, PE Chabot College Mathematics
67
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 67 Bruce Mayer, PE Chabot College Mathematics MATLAB Code MATLAB Code % Bruce Mayer, PE % MTH-15 18Jul13 % XYfcnGraph6x6BlueGreenBkGndTemplate1306.m % % The Limits xmin = 0; xmax =16; ymin = 0; ymax = 3; % The FUNCTION x = linspace(xmin,xmax,1000); y = 4*(log(x).^2)./x; % % The ZERO Lines zxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green plot(x,y, 'LineWidth', 4),axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = 4ln^2x/x'),... title(['\fontsize{16}MTH15 Sketch ln',]),... annotation('textbox',[.75.05.0.1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'BMayer 18Jul13','FontSize',7) hold on set(gca,'XTick',[xmin:2:xmax]); set(gca,'YTick',[ymin:.5:ymax])
68
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 68 Bruce Mayer, PE Chabot College Mathematics Example Exp Inoculation Using Pts (0,5) & (5,0) in the Model Simplifying, we can solve the first equation for a and then substitute into the second equation.
69
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 69 Bruce Mayer, PE Chabot College Mathematics Example Exp Inoculation Running the Numbers Now Back SubStitute to find a: Sub the Values of a & b into Model:
70
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 70 Bruce Mayer, PE Chabot College Mathematics Example Exp Inoculation Then the target level of infection is 2000 People, which translatesto solving the equation I(x) = 2 State: when 2,676 individuals are inoculated, only 2000 will get sick This suggests that even Partial inoculation reduces disease transmission
71
BMayer@ChabotCollege.edu MTH15_Lec-21_sec_4-4_EXP-n-LOG_Applications.pptx 71 Bruce Mayer, PE Chabot College Mathematics
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.