Download presentation
Presentation is loading. Please wait.
Published byLiliana Rogers Modified over 9 years ago
1
Nuclear masses and shell corrections of superheavy elements
Ning Wang1, Min Liu1, Xi-Zhen Wu2, Jie Meng3 1 Guangxi Normal University, Guilin, China 2 China Institute of Atomic Energy, Beijing, China 3 Peking University, Beijing, China Introduction Macroscopic-microscopic mass models Shell gaps and shell corrections Summary & discussions “Interfacing Structure and Reaction Dynamics in the Synthesis of the Heaviest Nuclei” at the ECT*, Trento, Italy, September 1 - 4, 2015
2
r-process、 symmetry energy
Super-heavy nuclei r-process、 symmetry energy To predict the ~ 4000 unknown masses based on the ~2353/2438 measured masses G. Audi, M. Wang, et al., Chin. Phys. C 36, 1287 (2012) H. Jiang, N. Wang, et al., Phys. Rev. C91(2015)054302
3
Central position of the island for SHE?
Yu. Oganessian. SKLTP/CAS - BLTP/JINR July 16, 2014, Dubna Central position of the island for SHE? neutrons → Wang, Liang, Liu, Wu, Phys. Rev. C 82 (2010) Courtesy of Qiu-Hong Mo Mass models with rms error of ~ keV
4
Nuclear mass models Global Local Systematics Garvey-Kelson
n-p residual ab initio Shell model … Microscopic Macro-Micro Duflo-Zuker … AME CLEAN RBF … Non-relativistic & relativistic energy density functional , more fundamental, can describe not only the properties of finite nuclei but also those of neutron stars
5
☺ Macroscopic-Microscopic:
Strutinsky type: (shell corrections) Finite range droplet model (FRDM): [M, β, Bf,…] Extended Thomas-Fermi+SI (ETFSI): [M, EOS, β, Bf,…] Lublin-Strasbourg Drop (LSD) model: [M, β, Bf,…] Weizsäcker-Skyrme (WS) formula: [M, β, Rch,…] … … Others : Esh from valence-nucleons: Kirson, NPA798 (2008) Dieperink & Isacker, EPJA 42 (2009) 269 Wigner-Kirkwood method: Centelles, Schuck, Vinas, Anna Phys. 322 (2007) 363; Bhagwat, et al.,PRC81_044321 KUTY model: Koura, Uno, Tachibana, Yamada, NPA674(2000)47 … …
6
n-p residual interaction Isobaric Multiplet Mass Equation ……
۞ Local mass formulas: Garvey-Kelson n-p residual interaction Isobaric Multiplet Mass Equation …… Garvey, Gerace, Jaffe, Talmi, Kelson, Rev. Mod. Phys. 41 (1969) S1 Barea, Frank, Hirsch, Isacker, et al, Phys. Rev. C 77 (2008) (R) N Z Y. M. Zhao, et al., Phys. Rev. C ; Phys. Rev. C ; Phys. Rev. C ; …
7
Mass predictions from local mass equations by using iterations
errors increase rapidly with iterations 1)error of local mass equations, ~100keV 2)predicted masses are used in new iteration MeV Morales et al. , Nucl. Phys. A 828 (2009) 113 Morales, et al., Phys. Rev. C 83, (2011)
8
Image reconstruction techniques
Morales, Isacker, Velazquez, Barea, et al., Phys. Rev. C 81(2010)024304 CLEAN deconvolution the aim is to select those Fourier components that best explain the observed patterns of the image
9
Radial Basis Function (RBF) corrections
leave-one-out cross-validation Revised masses Wang & Liu, Phys. Rev. C 84, (R) (2011)
10
RBF corrections for different mass models
N. Wang and M. Liu, J. Phys: Conf. Seri. 420 (2013)
11
AME2012 Z. M. Niu, et al., Phys. Rev. C 88 (2013)
12
Nuclear mass tables WS mass tables http://www.imqmd.com/mass/
HFB mass tables AME2012 Compilation of mass measurements
13
S. Goriely J. M. Pearson
14
Why is the difference so large for neutron-rich nuclei ?
15
Macroscopic-microscopic mass models 1. Liquid-drop formula
‘semi-empirical mass formula’ of von Weizsäcker in 1935 EOS symmetric Mirror nuclei EOS asymmetric Liang, et al., Nucl. Phys. Rev. 28 (2011)1
16
Parabolic approximation for small deformations
2. Liquid Drop Energy of nuclei with sharp surface (at small deformations) Myers & Swiatecki, Nucl. Phys. 81 (1966) 1 Volume term Surface term Coulomb term Parabolic approximation for small deformations
17
Parabolic approx. for the deformation energies
Skyrme energy density functional + ETF2 Parabolic approximation can significantly reduce the CPU time
18
The values of g1 and g2 can be obtained by known masses
Nuclear surface diffuseness and its isospin dependence result in the deformation energies complicated
19
Isospin dependence of the surface diffuseness Deformation dependence of the symmetry energy coefficients of nuclei Skyrme energy density functional + ETF2 Mo, Liu, Chen, Wang, Sci. China - Phys. Mech. Astron. 58 (2015)
20
Deviations from experimental data
Myers & Swiatecki, Nucl. Phys. 81 (1966) 1 Lunney, Pearson, Thibault, Rev. Mod. Phys. 75 (2003) 1021
21
Shell effects are evident at magic numbers
22
3. Strutinsky shell correction
Strutinsky & Ivanjuk, Nucl. Phys. A255 (1975) 405 p Pomorski, Comp. Phys. Comm.174(2006)181 Diaz-Torres, Phys. Lett. B594 (2004) 69 : energy smoothing parameter p : order of Gauss–Hermite
23
Woods-Saxon potential
symmetry potential Cwoik, Dudek, et al., Comput. Phys. Commun. 46 (1987) 379
24
4. Weizsäcker-Skyrme mass formula
Liquid drop Deformation Shell Residual Residual:Mirror 、pairing 、Wigner corrections... Macro-micro concept & Skyrme energy density functional PRC ; PRC ; PRC
25
Isospin dependence of model parameters
Symmetry energy coefficient Symmetry potential Strength of spin-orbit potential Pairing corr. term symmetry potential WS3:Phys.Rev.C84_014333
26
5. Isospin dependence of surface diffuseness
Neutron-rich N. Wang, M. Liu, X. Z. Wu, and J. Meng, Phys. Lett. B 734 (2014) 215
27
Potential energy surface around ground state deformations
WS By setting different initial values, one can find the lowest energy are considered
28
Determination of model parameters:
Simulated annealing global minimum Greedy algorithm local minimum
29
9 y 13 y 4 y Rms (keV) FRDM HFB24 WS WS4 654 549 525 298 31 30 13 18
Rms error Rms (keV) FRDM HFB24 WS WS4 To known masses 654 549 525 298 Number of model para. 31 30 13 18
30
Predictive power for new masses AME2012
M(WS3) – M(exp.) Predictive power for new masses AME2012 rmsD (in keV) WS3 FRDM DZ28 HFB17 sigma (M)2149 336 656 360 581 sigma (M)219 424 765 673 648
31
For new masses after 2012
32
Shell gaps
33
New magic numbers Wienholtz, et al., Nature 498 (2013)346
34
Shell structure in heavy and super-heavy nuclei
108 Mo, Liu, Wang, Phys. Rev. C 90, (2014)
35
Shell corrections N=16 Emic (FRDM): ground state microscopic energy
WS* Emic (FRDM): ground state microscopic energy
36
FRDM WS* KSO = -1 KSO = 1 WS4, Phys. Lett. B 734 (2014) 215
Xu & Qi, Phys. Lett. B724 (2013) 247
38
Symmetry energy coefficient and symmetry potential
I=(N-Z)/A NPA818 (2009) 36 Wang & Liu, PRC81,
39
Influence of potential parameters on the shell corrections
Radius of potential Surface diffuseness Depth of potenital Symmetry potential Spin-orbit potential
41
Summary The rms deviations of mass models with respect to known masses fall to about 200 keV (local) and keV (global) . For super-heavy nuclei and drip line nuclei, model uncertainty increases rapidly. Isospin dependence of model parameters (such as symmetry potential and spin-orbit potential) influences the new magic numbers and shell corrections of SHE. The shell gap is a sensitive quantity to test mass models. WS formula indicates N=142, 152, 162, 178; Z=92, 100, 108, 120 could be sub-shell closure in super-heavy region, in addition to traditional magic numbers Z=114, N=184.
42
Thank you for your attention
Differences make the world more beautiful
43
Discussions Nuclear deformations and radii
Uncertainty of model predictions Fission barrier Symmetry energy coefficients Other corrections … …
44
Quadrupole Deformations
Oblate Quadrupole Deformations Prolate
45
Comparison of nuclear Quadrupole deformations
WS FRDM Zhu Li,Bao-Hua Sun
46
Comparison of nuclear Octupole deformations
deformations can also be included in the WS calculations
47
Deformation energies
48
Rms charge radii N. Wang, T. Li, Phys. Rev. C88, (R)
49
RMF: Lalazissis, Raman, and Ring, At. Data Nucl
RMF: Lalazissis, Raman, and Ring, At. Data Nucl. Data Tables 71, 1 (1999)
50
Nuclear charge radii from WS* model
Angeli & Marinova, J. Phys. G: Nucl. Part. Phys. 42 (2015) For and , rch = 6.24±0.14 and 6.13±0.16 fm from the α-decay data WS* results: 6.17 and 6.19 fm Ni, Ren, Dong, Qian, Phys. Rev. C 87, (2013)
51
Uncertainty of Model predictions
Model errors increase for drip line nuclei
52
Litvinov, Palczewski, Cherepanov, Sobiczewski, Acta Phys. Polo
Litvinov, Palczewski, Cherepanov, Sobiczewski, Acta Phys. Polo. B 45 (2014) 1979
54
Oganessian & Utyonkov, Nucl. Phys. A (2015) (in press)
55
Fission barrier Z=114, A=298 Sobiczewski, Pomorski, Prog. Part. Nucl. Phys. 58 (2007) 292
56
Comparison of Bf and Esh
For Z= region Kowal,et al., Phys. Rev. C 82_014303
57
Symmetry energy coefficients of nuclei
Parabolic law for drip line nuclei? Liu, Wang, Li, Zhang, Phys. Rev. C 82_064306
58
Symmetry energy coefficients of finite nuclei from Skryme energy density functional + ETF
59
Convergence test for the higher order terms
60
N. Wang, M. Liu, H. Jiang, J. L. Tian, Y. M. Zhao, Phys. Rev
N. Wang, M. Liu, H. Jiang, J. L. Tian, Y. M. Zhao, Phys. Rev. C 91, (2015)
61
Influence of the coefficient of fourth order terms
Nbound Jiang, Wang, et al., Phys. Rev.C 91, (2015)
63
Residual – Mirror corr. reduces rms error by ~10%
with the same mass but with the numbers of protons and neutrons interchanged Residual – Mirror corr. reduces rms error by ~10% charge-symmetry / independence of nuclear force
64
Residual – Wigner corr. of heavy nuclei
(N,Z) N=Z K. Mazurek, J. Dudek,et al., J. Phys. Conf. Seri. 205 (2010)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.