Download presentation
Published byBrittney Leonard Modified over 9 years ago
1
Chapter 19 Electronic Electrochemical Chemical and Thermal Machining Processes (Review) EIN Manufacturing Processes Summer A, 2011 1
2
19.1 Introduction Non-traditional machining (NTM) processes have several advantages Complex geometries are possible Extreme surface finish Tight tolerances Delicate components Little or no burring or residual stresses Brittle materials with high hardness can be machined Microelectronic or integrated circuits (IC) are possible to mass produce
3
NTM Processes Four basic groups of material removal using NTM processes Chemical: Chemical reaction between a liquid reagent and workpiece results in etching Electrochemical An electrolytic reaction at workpiece surface for removal of material Thermal High temperature in very localized regions evaporate materials, for example, EDM Mechanical High-velocity abrasives or liquids remove materials
4
Limitations of Conventional Machining Processes
Machining processes that involve chip formation have a number of limitations Large amounts of energy Unwanted distortion Residual stresses Burrs Delicate or complex geometries may be difficult or impossible
5
Conventional End Milling vs. NTM
Typical machining parameters Feed rate (5 – 200 in./min.) Surface finish (60 – 150 min) AA – Arithmetic Average Dimensional accuracy (0.001 – in.) Workpiece/feature size (25 x 24 in.); 1 in. deep NTM processes typically have lower feed rates and require more power consumption The feed rate in NTM is independent of the material being processed
6
19.2 Chemical Machining Processes
Typically involves metals, but ceramics and glasses may be etched Material is removed from a workpiece by selectively exposing it to a chemical reagent or etchant Gel milling- gel is applied to the workpiece in gel form. Maskant- selected areas are covered and the remaining surfaces are exposed to the etchant. This is the most common method of CHM.
7
Table 19-1 Summary of NTM Processes
9
Masking Several different methods
Cut-and-peel Scribe-and-peel Screen printing Etch rates are slow in comparison to other NTM processes Figure 19-1 Steps required to produce a stepped contour by chemical machining.
10
Defects in Etching If baths are not agitated properly, defects result
Figure 19-2 Typical chemical milling defects: (a) overhang: deep cuts with improper agitation; (b) islands: isolated high spots from dirt, residual maskant, or work material inhomogeneity; (c) dishing: thinning in center due to improper agitation or stacking of parts in tank. If baths are not agitated properly, defects result
11
Advantages and Disadvantages of Chemical Machining
Process is relatively simple Does not require highly skilled labor Induces no stress or cold working in the metal Can be applied to almost any metal Large areas Virtually unlimited shape Thin sections Disadvantages Requires the handling of dangerous chemicals Disposal of potentially harmful byproducts Metal removal rate is slow
12
19.3 Electrochemical Machining Process
Electrochemical machining (ECM) removes material by anodic dissolution with a rapidly flowing electrolyte The tool is the cathode and the workpiece is the electrolyte Figure Schematic diagram of electrochemical machining process (ECM).
13
Table 19-3 Material Removal Rates for ECM of Alloys Assuming 100% Current Efficiency
14
Advantages and Disadvantages of Electrochemical Machining
ECM is well suited for the machining of complex two- dimensional shapes Delicate parts may be made Difficult-to machine geometries Poorly machinable materials may be processed Little or no tool wear Disadvantages Initial tooling can be timely and costly Environmentally harmful by-products
15
19.4 Electrical Discharge Machining
Electrical discharge machining (EDM) removes metal by discharging electric current from a pulsating DC power supply across a thin interelectrode gap The gap is filled by a dielectric fluid, which becomes locally ionized Two different types of EDM exist based on the shape of the tool electrode Ram EDM/ sinker EDM Wire EDM
16
Figure EDM or spark erosion machining of metal, using high-frequency spark discharges in a dielectric, between the shaped tool (cathode) and the work (anode). The table can make X-Y movements.
17
Figure EDM or spark erosion machining of metal, using high-frequency spark discharges in a dielectric, between the shaped tool (cathode) and the work (anode). The table can make X-Y movements.
18
EDM Processes Slow compared to conventional machining
Produce a matte surface Complex geometries are possible Often used in tool and die making Figure Schematic diagram of equipment for wire EDM using a moving wire electrode.
19
Effect of Current on-time and Discharge Current on Crater Size
MRR = (C I)/(Tm1.23), Where MRR – material removal rate in in.3/min.; C – constant of proportionality equal to 5.08 in US customary units; I – discharge current in amps; Tm – melting temperature of workpiece material, 0F. Example: A certain alloy whose melting point = 2,000 0F is to be machined in EDM. If a discharge current = 25A, what is the expected metal removal rate? MRR = (C I)/(Tm1.23) = (5.08 x 25)/(2, ) = in.3/min.
20
Figure 19-25 The principles of metal removal for EDM.
21
Effect of Current on-time and Discharge Current on Crater Size
From Fig 19 – 25: we have the conclusions: Generally higher duty cycles with higher currents and lower frequencies are used to maximize MRR. Higher frequencies and lower discharge currents are used to improve surface finish while reducing MRR. Higher frequencies generally cause increased tool wear.
22
Considerations for EDM
Graphite is the most widely used tool electrode The choice of electrode material depends on its machinability and coast as well as the desired MRR, surface finish, and tool wear The dielectric fluid has four main functions Electrical insulation Spark conductor Flushing medium Coolant
23
Table 19-5 Melting Temperatures for Selected EDM Workpiece Materials
24
Advantages and Disadvantages of EDM
Applicable to all materials that are fairly good electrical conductors Hardness, toughness, or brittleness of the material imposes no limitations Fragile and delicate parts Disadvantages Produces a hard recast surface Surface may contain fine cracks caused by thermal stress Fumes can be toxic
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.