Download presentation
1
UK Sea Ice Meeting, 8-9th Sept 2005
Improving the Spatial Thickness Distribution of Modelled Arctic Sea Ice Paul Miller, Seymour Laxon, Daniel Feltham Centre for Polar Observation and Modelling University College London
2
Motivation Rothrock et al., (2003) showed Arctic sea ice thickness as predicted by various models Significant differences, both in the mean and anomaly of ice thickness during the last 50 years Causes of differences not well understood, but there is both parameter and forcing uncertainty How can we reduce this uncertainty and increase our confidence in conjectures based on model output?
3
Reducing Parameter Uncertainty in Sea Ice Models
Use one of the best available sea ice models (CICE) and force it with the best available fields (ERA-40 & POLES) Optimise and validate the model using a comprehensive range of sea ice observations: Sea ice velocity, (SSM/I + buoy + AVHRR, Fowler, 2003, NSIDC) Sea ice extent, (SSM/I, NSIDC) Sea ice thickness, (ERS radar altimeter, Laxon et al., 2003) We used this model and forcing to reduce uncertainty surrounding sea ice model parameters
4
Parameter Space We explored the model’s multi-dimensional parameter
space to find the ‘best’ fit to the observational data Our parameter space has three dimensions Uncertainty surrounds correct values to use Space includes commonly-used values 168 model runs needed to optimise model Albedo, ice 0.62 0.54 0.0003 Ice strength, P* 0.0016 2.5 100 (kPa) Air drag coefficient, Cair
5
Arctic Basin Ice Thickness (<81.5oN)
Miller et al 2005a {ice, Cair, P*} = {0.56, , 5 kPa}
6
Validation Using ULS Data from Submarine Cruises
We consider data from 9 submarine cruises between 1987 and 1997 Rothrock et al. (2003) used this data to test their coupled ice-ocean model Modelled cruise means of ice draft are in good agreement with ULS observations Rothrock et al., 2003, JGR, 108(C3), 3083 R = 0.98 RMS difference = 0.28m
7
Spatial Draft Discrepancy
Rothrock et al., 2003, JGR, 108(C3), 3083 Optimised CICE Model
8
Sea Ice Rheology 2 1 e=√.5 CICE sea ice rheology is plastic
CICE has an elliptical yield curve, with ratio of major to minor axes, e (Hibler, 1979) Maximum shear strength determined by P*, thickness, concentration and e Decreasing e reduces ice thickness in the western Arctic and increases it near the Pole S 1 P/2 S e=2 C
9
Spatial Draft Discrepancy
10
Improvements Due to Increased Shear Strength
Improved Cruise Averages Improved Zonal Averages
11
Model vs ERS Mean Winter Ice Thickness (<81.5oN)
Model-Satellite Thickness (m)
12
Truncated Yield Curve 2 1 S e=2 e=√.5
13
Truncated Yield Curve 2 1 S e=2 e=√.5 Truncated
14
Truncated Yield Curve 2 1 e=2 e=√.5 Truncated < 80% Ice
S e=2 e=√.5 Truncated < 80% Ice Concentration
15
Arctic Basin Ice Thickness Since 1980
(Truncated for IC < 80%)
16
Conclusions Initial work reduced parameter uncertainty in a stand-alone sea ice model Observations of thickness/draft from submarine cruises were used to independently test the optimised model By increasing the shear strength (by changing e from 2 to .5), we reproduced the observed spatial distribution of ice draft Found that some tensile strength is necessary These results are in press, Miller et al 2005b
17
Paul Miller, Seymour Laxon, Daniel Feltham
Centre for Polar Observation and Modelling, UCL
18
Slide 5 Melt Season Length Ice Concentration Ice Motion Extend observational validation back to mid-1980’s using intermittent submarine data Use optimised model to examine changes in radiative, thermal, and mechanical forcing to determine primary mechanisms in ice mass change from present
19
ERS-derived Mean Winter Ice Thickness
Model-Observed Thickness (m)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.