Download presentation
Presentation is loading. Please wait.
Published byAileen Melton Modified over 9 years ago
1
Lecture 11UofH - COSC 3340 - Dr. Verma 1 COSC 3340: Introduction to Theory of Computation University of Houston Dr. Verma Lecture 11
2
UofH - COSC 3340 - Dr. Verma 2 Push Down Automaton (PDA) Language Acceptor Model for CFLs It is an NFA with a stack. Finite State control Input Stack Accept/Reject
3
Lecture 11UofH - COSC 3340 - Dr. Verma 3 PDA (contd.) In one move the PDA can : – change state, – consume a symbol from the input tape or ignore it – pop a symbol from the stack or ignore it – push a symbol onto the stack or not A string is accepted provided the machine when started in the start state consumes the string and reaches a final state.
4
Lecture 11UofH - COSC 3340 - Dr. Verma 4 PDA (contd.) If PDA in state q can consume u, pop x from stack, change state to p, and push w on stack we show it as q0q0 u, x w q1q1 u, x ; w In JFLAP
5
Lecture 11UofH - COSC 3340 - Dr. Verma 5 Example of a PDA PDA L = {a n b n |n 0} Push S to the stack in the beginning and then pop it at the end before accepting.
6
Lecture 11UofH - COSC 3340 - Dr. Verma 6 JFLAP Simulation
7
Lecture 11UofH - COSC 3340 - Dr. Verma 7 JFLAP Simulation
8
Lecture 11UofH - COSC 3340 - Dr. Verma 8 JFLAP Simulation
9
Lecture 11UofH - COSC 3340 - Dr. Verma 9 JFLAP Simulation
10
Lecture 11UofH - COSC 3340 - Dr. Verma 10 JFLAP Simulation
11
Lecture 11UofH - COSC 3340 - Dr. Verma 11 JFLAP Simulation
12
Lecture 11UofH - COSC 3340 - Dr. Verma 12 JFLAP Simulation
13
Lecture 11UofH - COSC 3340 - Dr. Verma 13 JFLAP Simulation
14
Lecture 11UofH - COSC 3340 - Dr. Verma 14 JFLAP Simulation
15
Lecture 11UofH - COSC 3340 - Dr. Verma 15 JFLAP Simulation
16
Lecture 11UofH - COSC 3340 - Dr. Verma 16 JFLAP Simulation
17
Lecture 11UofH - COSC 3340 - Dr. Verma 17 JFLAP Simulation
18
Lecture 11UofH - COSC 3340 - Dr. Verma 18 JFLAP Simulation
19
Lecture 11UofH - COSC 3340 - Dr. Verma 19 JFLAP Simulation
20
Lecture 11UofH - COSC 3340 - Dr. Verma 20 JFLAP Simulation
21
Lecture 11UofH - COSC 3340 - Dr. Verma 21 JFLAP Simulation
22
Lecture 11UofH - COSC 3340 - Dr. Verma 22 JFLAP Simulation
23
Lecture 11UofH - COSC 3340 - Dr. Verma 23 JFLAP Simulation
24
Lecture 11UofH - COSC 3340 - Dr. Verma 24 JFLAP Simulation
25
Lecture 11UofH - COSC 3340 - Dr. Verma 25 Definition of PDA Formally, a PDA M = (K, , , , s, F), where – K -- finite set of states – -- is the input alphabet – -- is the tape alphabet – s K -- is the start state – F K -- is the set of final states – (K X X ) X (K X )
26
Lecture 11UofH - COSC 3340 - Dr. Verma 26 Definition of L(M) Define * as: (1) *(q, w, x) = {(q, w, x)} {(p, w, x) | ((q, , ), (p, )) } (2) *(q, uv, xy) = U { *(p, v, wy) | ((q, u, x), (p, w)) } [at least one of u, x, w is not equal to ] – i.e., first compute * for all successor configurations and then take the union of all those sets M accepts w if (f, , x) in *(s, w, ) Alternative: if (f, , ) in *(s, w, ) [we use] L(M) = {w * | M accepts w}
27
Lecture 11UofH - COSC 3340 - Dr. Verma 27 Example What is L(M)? Push S to the stack in the beginning and then pop it at the end before accepting.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.