Download presentation
Presentation is loading. Please wait.
Published byJoella Burns Modified over 9 years ago
2
Comparison Networks Sorting Sorting binary values Sorting arbitrary numbers Implementing symmetric functions
3
Sorting Algorithms comparisons to sort n elements comparisons required to merge two arrays of size m/2 Order of comparisons not fixed in advance. Mergesort(array[1,…,n] of Integers): begin Mergesort(array[1,…,n/2]); Mergesort(array[n/2+1,…,n]); Merge(array[1,…,n/2], array[n/2+1,…,n]); end Not readily implementable in hardware. Example
4
Sorting Networks Order of comparisons fixed in advance. Readily implementable in hardware. C D B A A B C D Sorting Network
5
Sorting Networks (binary values) Sorting Network 1 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 inputs outputs sorted
6
Comparator (2-sorter) x y min(x, y) max(x, y) inputs outputs C
7
Comparator (2-sorter) x y min(x, y) max(x, y) inputs outputs
8
Comparison Network 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 depth d width n
9
Comparison Network 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 n / 2 comparisons per stage d stages
10
Sorting Network Any ideas?
11
Sorting Network inputs outputs n 1 Sorting Network...... n...
12
Insertion Sort Network inputs outputs depth 2n 3
13
Batcher Sorting Network Next Lecture
14
Sorting Arbitrary Numbers x, y can be values from any linearly ordered set, e.g., integers, reals, etc. inputs outputs x y min(x, y) max(x, y)
15
Comparison function: C(X,Y) = 1 if X > Y, 0 otherwise. Idea: use C(X,Y) to select the min and the max of X and Y. X, Y: integers represented as m-bit binary strings. Integer Comparator
16
Sorting Arbitrary Numbers 9 6 2 2 6 9 2 9 6 sorted 6 9 2
17
Sorting Arbitrary Numbers 1 4 5 1 4 5 1 5 4 sorted 4 5 1
18
Sorting Arbitrary Numbers 3 0 7 3 0 7 3 7 0 0 7 3 not sorted How can we verify if a network sorts all possible input sequences?
19
Sorting Arbitrary Numbers inputsoutputs Try all possible 0/1 sequences.
20
Sorting Arbitrary Numbers 0 0 0 0 0 0 0 0 0 0 0 0 000 inputsoutputs Try all possible 0/1 sequences.
21
Sorting Arbitrary Numbers 0 1 0 0 0 1 0 0 1 0 1 0 inputsoutputs 000 Try all possible 0/1 sequences. 001
22
Sorting Arbitrary Numbers 0 0 1 0 0 1 0 1 0 0 1 0 inputsoutputs 000 Try all possible 0/1 sequences. 001 010 001
23
Sorting Arbitrary Numbers 0 1 1 0 1 1 0 1 1 1 1 0 inputsoutputs 000 Try all possible 0/1 sequences. 001 010001 011
24
Sorting Arbitrary Numbers 1 0 0 0 0 1 0 1 0 0 1 0 inputsoutputs 000 Try all possible 0/1 sequences. 001 010001 011 100 001
25
Sorting Arbitrary Numbers 1 1 0 0 1 1 0 1 1 1 1 0 inputsoutputs 000 Try all possible 0/1 sequences. 001 010001 011 100001 101 011
26
Sorting Arbitrary Numbers 1 0 1 1 0 1 1 1 0 0 1 1 inputsoutputs 000 Try all possible 0/1 sequences. 001 010001 011 100001 101011 110 101 not sorted!
27
Sorting Arbitrary Numbers 1 1 1 1 1 1 1 1 1 1 1 1 inputsoutputs 000 Try all possible 0/1 sequences. 001 010001 011 100001 101011 110101 111 not sorted!
28
Sorting Arbitrary Numbers
29
inputsoutputs Try all possible 0/1 sequences.
30
Sorting Arbitrary Numbers 0 0 0 0 0 0 0 0 0 0 0 0 000 inputsoutputs Try all possible 0/1 sequences.
31
Sorting Arbitrary Numbers 0 1 0 0 0 1 0 0 1 0 1 0 inputsoutputs 000 Try all possible 0/1 sequences. 001
32
Sorting Arbitrary Numbers 0 0 1 0 0 1 0 1 0 1 0 0 inputsoutputs 000 Try all possible 0/1 sequences. 001 010 001
33
Sorting Arbitrary Numbers 0 1 1 0 1 1 0 1 1 1 1 0 inputsoutputs 000 Try all possible 0/1 sequences. 001 010001 011
34
Sorting Arbitrary Numbers 1 0 0 0 0 1 0 1 0 1 0 0 inputsoutputs 000 Try all possible 0/1 sequences. 001 010001 011 100 001
35
Sorting Arbitrary Numbers 1 1 0 0 1 1 0 1 1 1 1 0 inputsoutputs 000 Try all possible 0/1 sequences. 001 010001 011 100001 101 011
36
Sorting Arbitrary Numbers 1 0 1 0 1 1 1 1 0 1 1 0 inputsoutputs 000 Try all possible 0/1 sequences. 001 010001 011 100001 101011 110 011
37
Sorting Arbitrary Numbers 1 1 1 1 1 1 1 1 1 1 1 1 inputsoutputs 000 Try all possible 0/1 sequences. 001 010001 011 100001 101011 110011 111
38
Sorting Arbitrary Numbers inputsoutputs 000 Try all possible 0/1 sequences. 001 010001 011 100001 101011 110011 111 all sorted!
39
Zero-One Principle If a comparison network sorts all possible sequences of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers correctly.
40
Lemma Given For a monotonically increasing function f,
41
Lemma Given For a monotonically increasing function f,
42
Proof: Lemma
44
f is monotonically increasing:
45
Proof: Lemma f is monotonically increasing:
46
Proof: Lemma f is monotonically increasing:
47
Generalization Given
48
For a monotonically increasing function f, Generalization (by induction)
49
Proof: Zero-One Principle Suppose b) there exists a sequence that it doesn’t sort, i.e., such that but is placed before in the output. a) the network sorts all sequences of 0’s and 1’s, Define f (x) = 0 if 1 otherwise
50
Proof: Zero-One Principle Sorting Network.........
51
Proof: Zero-One Principle Sorting Network.........
52
Proof: Zero-One Principle Sorting Network......... 1 0 contradiction!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.