Presentation is loading. Please wait.

Presentation is loading. Please wait.

Nagoya Univ. Kunio Awaga

Similar presentations


Presentation on theme: "Nagoya Univ. Kunio Awaga"— Presentation transcript:

1 Nagoya Univ. Kunio Awaga
Quantum Spin Systems in Molecule-based Magnetic Materials Nagoya Univ. Kunio Awaga Molecule-based magnetic materials 2. Chemical modifications of Mn12 and their influences ( 3. Unusual physical properties of thiazyl radicals )

2 Characters of molecule-based magnetic materials
a. Spin polarization McConnell’s Proposals for Ferromagnetic Intermolecular Interactions S=1/2 Type I: H = -JSASB = -SASB S Jij riA rjB Type II: Resonance with S=1 CT State Negative spin density M X Organic Ferromagnetism

3 1D b. Strong spin-lattice interactions
Dia-Paramagnetic Phase Transition 1D Spin-Peierls Transition antiferromagnetic ferromagnetic Galvinoxyl K. Mukai, H. Nishiguchi, Y. Deguchi, J. Phys. Soc. Jpn., 23, (1967). K. Awaga, T. Sugano and M. Kinoshita, J. Chem. Phys., 85, 2211 (1986).

4 Pressure-induced ferro- to antiferro-magnetic transition
c. Controllable properties Photomagnets S=0 S=0 S=3/2 S=1/2 Red light Blue light Nonmagnetic Ferrimagnet Mito, Masaki; Kawae, Tatsuya; Takumi, Masaharu; Nagata, Kiyofumi; Tamura, Masafumi; Kinoshita, Minoru; Takeda, Kazuyoshi. Phys. Rev. B: Condens. Matter (1997), 56(22), R14255-R14258. O. Sato, T. Iyoda, A. Fujishima, K. Hashimoto, Science, 272, 704 (1996)

5 d. Good models Heisenberg spins Low-dimensional spin systems
Organic Kagome Antiferromagnet Intradimer: J1 ~10 K S=1 Interdimer: J2 ~ -1 K K. Awaga, T. Okuno, A. Yamaguchi, M. Hasegawa, T. Inabe, Y. Maruyama and N. Wada, Phys. Rev. B, 49, 3975 (1994). Spin Frustration !

6 Spin Gap ! Gapless ! S=1 Spin Frustration on Kagome Lattice S=0
N. Wada, T. Kobayashi, H. Yano, T. Okuno, A. Yamaguchi and K. Awaga, J. Phys. Soc. Japan, 66, 961 (1997).

7

8 Single molecule magnets
e. Spin clusters Single molecule magnets [MnIVMnIII3O3Cl4(O2CCH3)3(py)3] [MnIV2MnIII2(pdmH)6(O2CCH3)2(H2O)4](ClO4)2 [FeIII4(OCH3)6(dpm)6] [VIII4O2(O2CC2H5)7(bipy)2](ClO4) [Mn4IIMn3III(teaH)3(tea)3](ClO4)2•3CH3OH [Cr{(CN)Ni(tetren)}6](ClO4)9 {[FeIII8O2(OH)12(tacn)6]Br7•H2O}[Br•8H2O] [FeIII10Na2O6(OH)4(O2CC6H5)10(chp)6(H2O)2{(CH3)2CO}2] [MnIV4MnIII8O12(O2CCH3)16(H2O)4]•2CH3CO2H•4H2O (Mn12) {[Fe17O4(OH)16{N(CH2CO2H)2(CH2CH2OH)}8(H2O)12]+   [Fe19O6(OH)14(N(CH2CO2H)2(CH2CH2OH))10(H2O)12]+} Co24(OH)18(OCH3)2Cl6(2-methyl-6-hydroxypyridine)22 [MnIVMnIV26MnII3O24(OH)8(O2CCH2C(CH3)3)32(H2O)2(CH3NO2)4]

9 2. Chemical modifications of Mn12 and their influences
a. Chemistry of Mn12 b. Jahn-Teller isomerisom in Mn12 c. Quantum Effects in Mn11Cr (Hokkaido univ.)K. Takeda, T. Inabe (Tokyo univ.) A. Yamaguchi, H. Ishimoto, T. Tomita, H. Mitamura, T. Goto, N. Mouri (Okayama Sci. univ.) H. Nojiri (Kyoto univ.) T. Goto (Nara Univ. Educ.)T. Kubo (Nagoya univ.) Y. Suziki、H. Hachisuka (Inst. Mol. Sci.)  T. Yokoyama

10 a. Chemistry of Mn12 Synthsis of Mn12 MnII(CH3COO)2 + KMnVIIO4
[Mn12III, IVO12(CH3COO)16(H2O)4] 60% CH3COOH (Mn12Ac) T.Lis, Acta Cryst., B36, 2042 (1980).

11 Core structure of Mn12 I II II Mn3+ Mn4+ Site I I O2- Site II II I
Mn(III) sites JT軸

12 Ligand exchange Mn12Ac Mn12Ph Mn12Ph・2PhCOOH R=CHCl2 ax
R. Sessoli et al., J. Am. Chem. Soc., 155, 1804 (1993). excess C6H5COOH hexane Mn12Ac Mn12Ph CH2Cl2 layering excess C6H5COOH excess C6H5COOH Mn12Ph・2PhCOOH CH2Cl2 evaporation CH2Cl2 K Takeda, K. Awaga and T. Inabe, Phys. Rev. B, 57,11062 (1998). M. Soler, et al. Inorg. Chem., 40, 4902 (2001). Mixed-Carboxylate Complexes [Mn12O12(O2CR)8(O2CR')8(H2O)4] R=CHCl2 ax Basicities: ButCH2CO2- >> CHCl2CO2- R’=CH2But eq

13 Mn-Fe mixed cluster Mn12Ac Fe(CH3COO)2 + KMnO4
A. R. Schake et al., Inorg. Chem., 33, 6020 (1994). 55  ºC Fe(CH3COO)2 + KMnO4 [Fe4Mn8O12(CH3COO)16(H2O)4] 60 % CH3COOH Fe3+ (site II) Mn12Ac MnII(CH3COO)2 KMnVIIO4 MnIII (site II) MnIII (site I) MnIV Ground state is S=0 !?

14 b. Jahn-Teller isomerisom in Mn12
K. Takeda and K. Awaga, Phys. Rev. B, 56, (1997). K Takeda, K. Awaga and T. Inabe, Phys. Rev. B, 57,11062 (1998). K. Takeda, K. Awaga, T. Inabe, A. Yamaguchi, H. Ishimoto, T. Tomita, H. Mitamura, T. Goto. N. Mori, H. Nojiri, Phys. Rev. B, 65, (2002).

15 Magnetic properties of Mn12
1) High spin S = 9~10 2) Uniaxial Magnetic Anisotropy D = -0.6 K Mn(III) (S=2) Mn (IV) (S=3/2) Impurity!? H. J. Eppley et al., J. Am. Chem. Soc., 117, 301 (1995).

16 A+ [Mn12Ph]- PPh4+ m-MPYNN+ 1.7 K x1/6 (m-MPYNN+) [Mn12Ph]-
K. Takeda and K. Awaga, Phys. Rev. B, 56, (1997).

17 Solvated Mn12 (Batch A) Single Crystal includes both SR and FR !!
Mn12Ph・2PhCOOH K Takeda, K. Awaga and T. Inabe, Phys. Rev. B, 57,11062 (1998). K. Takeda, K. Awaga, T. Inabe, A. Yamaguchi, H. Ishimoto, T. Tomita, H. Mitamura, T. Goto. N. Mori, H. Nojiri, Phys. Rev. B65, (2002). t = 100s TB T= temp. of max. in c” D D=|D|Sz2 (Batch A) Single Crystal includes both SR and FR !! TB=1.3 K 2.7 K

18 SR : FR = 1 : 2 (Batch A)

19 TB=2.7 K TB=1.3 K

20 Batch B Only includes FR molecules

21 Crystal Structure(Batch B)
170 K a Crystal Solven Molecular Axis 49゜ Mn12 49゜ b O

22 Molecular Structure of FR Molecule(Batch B)
top view Elongated Octahedron Mn3~Mn6* Mn7 Compressed Octahedron

23 Chemical Pressure side view Ligand between Mn6 and Mn7
Crystal Solvent Molecule

24 Magnetic Anisotropy of FR Molecules
Tilted by 12° b a b Magnetic Easy axis 90°=a 60° 30° 12° 49° 0°=b Molecular Axis a 10 K DFR/kB= K g= 1.9 S=10

25 High-field EPR(428.9 GHz)for FR in ab plane
-30° 50° b Easy axis 41° 0°=b Hard plane Mol. axis S2 30° Max. of Res. Field Mol. axis 60° S1 a 90°=a by H. Nojiri

26 Angular dependence of the resonance field
in the hard plane for FR species ・Strong Uniaxial anisotropy 0°= c axis ・Anisotropy even in the hard plane ・Two kinds of FR 30° 60° 90°= ab plane 120° 150° DFR/kB= K g= 1.9 EFR/kB= K S=10

27 Magnetic Anisotropy of SR Molecules
Magnetic Easy Axis of SR Molecules Agrees with Molecular Axis QTM for SR Molecules q=90 (a axis) q=60 q=30 q=0 (b axis)

28 QTM for FR Magnetization curve for Batch B at 0.7 K in the field parallel to the b axis. 0.7 K D/kB=-0.27 K

29 High pressure effects on Mn12Ac
Y. Suzuki, K. Takeda and K. Awaga Single Crystal in Be-Cu cell SQUID

30 Sweep rate dependence of magnetization curves
0 GPa 0.6 GPa Little dependence at the zero field !

31 Sweep-rate dependence of tunneling probability PN
1 2 3 N=0

32 Pressure depend. of FR:SR
Sigmoid function: MFR = 2MsFR/[1 + exp(-H/A)] + B Pressure depend. of FR:SR

33 Summary (1) SR Molecule FR Molecule JT ion, Mn3+ Mn7 (site II)
Chemical Pressure JT ion, Mn3+ Mn7 (site II) TB=2.7 K TB=1.3 K Uniaxial Anisotropy Biaxial Anisotropy

34 (2) [Mn12Ph]- (3) Exchange and Tunneling Effects ??? SR FR
m-MPYNN+ [Mn12Ph]- Exchange and Tunneling Effects ??? (3) SR FR Step at zero field is mainly caused by FR

35

36 Magnetic anisotropy barrier for spin tunneling in Mn12O12 molecules Pederson MR, Khanna SN PHYSICAL REVIEW B 60, pp (1999). CHEM. PHYS. LETT. 307, pp (1999) . Fourth-order magnetic anisotropy and tunnel splittings in Mn-12 from spin-orbit-vibron interactions Pederson MR, Bernstein N, Kortus J PHYSICAL REVIEW LETTERS 89, no (2002). Magnetic ordering, electronic structure, and magnetic anisotropy energy in the high-spin Mn-10 single molecule magnet Kortus J, Baruah T, Bernstein N, Pederson MR PHYSICAL REVIEW B 66, no (2002).

37 Magnetic bistability and photo-induced phase transition in TTTA
2. Unusual physical properties of thiazyl radicals Magnetic bistability and photo-induced phase transition in TTTA W. Fujita and K. Awaga, Science, 286, pp (1999). W. Fujita, K. Awaga, H. Matsuzaki, H. Okamoto, Phys. Rev. B65, (2002).

38 RT Magnetic Bistability
Diamagnetic-Paramagnetic Phase Transition in TTTA Room Temp. 100 K RT Magnetic Bistability

39 Intradimer arrangement
Crystal Structures of TTTA Regular SOMO Dimerized Intradimer arrangement

40 Polarized Reflection Spectra of TTTA
U~2 eV at RT LE CT By H. Matsuzaki, H. Okamoto (Univ. of Tokyo)

41 Polarized Reflection Spectra Polarized Microscope Images
(Ei // stacking axis) HT stacking axis LT 50m by H. Matsuzaki, and H. Okamoto (Tokyo Univ.)

42 Polarized Microscope Images (Ei // stacking axis)
Irradiated Area LT phase Before 296K After Eexc // stacking axis h=2.64 eV (470 nm) 6 ns pulse 1shot 1) No transition with CW laser. 2) Ith in excitation photon density. 3) No transition from HT to LT. Photo-Induced Phase Transition !

43 Conductivities of TTTA
Room temp. HT phase: s ~10-8 W-1cm-1 Mott Inslator LT phase: s ~10-9 W-1cm-1 By T. Inabe (Hokkaido Univ.)

44 Acknowledgement (Hokkaido univ.)K. Takeda, T. Inabe (Tokyo univ.) A. Yamaguchi, H. Ishimoto, T. Tomita, H. Mitamura, T. Goto, N. Mouri (Okayama Sci. univ.) H. Nojiri (Kyoto univ.) T. Goto (Nara Univ. Educ.)T. Kubo (Nagoya univ.) Y. Suziki、H. Hachisuka (Inst. Mol. Sci.)  T. Yokoyama


Download ppt "Nagoya Univ. Kunio Awaga"

Similar presentations


Ads by Google