Download presentation
1
鄭弘泰 國家理論中心 (清華大學) 28 Aug, 2003, 東華大學
Introduction to LDA+U method and applications to transition-metal oxides: Importance of on-site Coulomb interaction U 鄭弘泰 國家理論中心 (清華大學) 28 Aug, 2003, 東華大學
2
Outline DFT, LDA (LDA, LSDA, GGA) Insufficiencies of LDA
How to improve LDA Self-interaction correction (SIC) LDA+U method Applications of LDA+U on various transition-metal oxides Conclusions
3
Density Functional Theory (DFT) Hohenberg-Kohn Theorem, PR136(1964)B864
The ground-state energy of a system of identical spinless fermions is a unique functional of the particle density. This functional attains its minimum value with respect to variation of the particle density subject to the normalization condition when the density has its correct values.
4
Local density approximation (LDA) Kohn-Sham scheme PR140(1965)A1133
5
Insufficiencies of LDA
Poor eigenvalues, PRB23, 5048 (1981) Lack of derivative discontinuity at integer N, PRL49, 1691 (1982) Gaps too small or no gap, PRB44, 943 (1991) Spin and orbital moment too small, PRB44, 943 (1991) Especially for transition metal oxides
6
PRB 23 (1981) 5048
7
PRL 49 (1982) 1691
8
PRB 44 (1991) 943
9
Attempts on improving LDA
Self-interaction correction (SIC) PRB23(1981)5048, PRL65(1990)1148 Hartree-Fock (HF) method, PRB48(1993)5058 GW approximation (GWA), PRB46(1992)13051, PRL74(1995)3221 LDA+Hubbard U (LDA+U) method, PRB44(1991)943, PRB48(1993)16929
10
Local density approximation (LDA) Kohn-Sham scheme PR140(1965)A1133
11
Self-interaction correction (SIC) Perdew and Zunger, PRB23(1981)5048
12
Basic idea of LDA+U PRB 44 (1991) 943, PRB 48 (1993) 169
Delocalized s and p electrons : LDA Localized d or f electrons : +U using on-site d-d Coulomb interaction (Hubbard-like term) UΣi≠jninj instead of averaged Coulomb energy UN(N-1)/2
13
Hubbard U for localized d orbital :
n+1 n-1 e n n U
14
LDA+U energy functional :
LDA+U potential :
15
LDA+U eigenvalue : For occupied state ni=1, For unccupied state ni=0,
16
Take Hydrogen for example:
Eexact(H) = -1.0 Ry ELDA(H) = -0.957 Ry~ Eexact(H) eLDA (H) = -0.538 Ry << Eexact (H)
17
ELDA(H-) : no bound state
p e e p Eexp(H-) = - Ry Eexact (H+) = 0.0 Ry ESIC(H-) = - Ry ELDA(H-) : no bound state e p U = E(H+) + E(H-) -2E(H) = Ry e p 2Eexact(H) = -2.0 Ry
18
eLDA (H) = -0.538 Ry U = Ry Occupied (H) state: eLDA+U(H) = eLDA (H) -U/2 = - Ry ~-1 Ry Unoccupied (H+) state: eLDA+U(H+) = eLDA (H) +U/2 = - Ry~0 Ry
19
When to use LDA+U Systems that LDA gives bad results
Narrow band materials : U≧W Transition-metal oxides Localized electron systems Strongly correlated materials Insulators …..
20
How to calculate U and J PRB 39 (1989) 9028
Constrained density functional theory + Supper-cell calculation Calculate the energy surface as a function of local charge fluctuations Mapped onto a self-consistent mean-field solution of the Hubbard model Extract the Coulomb interaction parameter U from band structure results
21
Where to find U and J PRB 44 (1991) 943 : 3d atoms
PRB 50 (1994) : 3d, 4d, 5d atoms PRB 58 (1998) 1201 : 3d atoms PRB 44 (1991) : Fe(3d) PRB 54 (1996) 4387 : Fe(3d) PRL 80 (1998) 4305 : Cr(3d) PRB 58 (1998) 9752 : Yb(4f)
22
Notes on using LDA+U The magnitude of U is difficult to calculate accurately, the deviation could be as large as ~2eV For the same element, U depends also on the ionicity in different compounds: the higher ionicity, the larger U One thus varies U in the reasonable range to obtain better results One might varies U in a much larger range to see the effect of U (qualitatively) → Self-consistent LDA+U (much more difficult)
23
Various LDA+U methods Hubbard model in mean field approx. (HMF) LDA+U : PRB 44 (1991) 943 (WIEN2K, LMTO) Approximate self-interaction correction (SIC) LDA+U : PRB 48 (1993) (WIEN2K) Around the mean field (AMF) LDA+U : PRB 49 (1994) (WIEN2K) Rotationally invariant LDA+U : PRB 52 (1995) R5468 (VASP4.6, LMTO) Simplified rotationally invariant LDA+U : PRB 57 (1998) 1505 (VASP4.6, LMTO)
24
Original LDA+U(HMF) : PRB 44 (1991) 943
25
LDA+U(SIC): PRB 48 (1993) 16929
26
LDA+U(AMF) : PRB 49 (1994) 14211
27
Rotationally invariant LDA+U: PRB52(1995)R5468
Slater integral
28
Simplified rotationally invariant LDA+U : PRB 57 (1998) 1505
29
Applications of LDA+U on transition-metal oxides
Pyrochlore : Cd2Re2O7 (VASP) Rutile : CrO2 (FP-LMTO) Double perovskite : Sr2FeMoO6, Sr2FeReO6, Sr2CrWO6 (FP-LMTO) Cubic inverse spinel : high-temperature magnetite (Fe3O4, CoFe2O4, NiFe2O4) (FP-LMTO, VASP, WIEN2K) Low-temperature charge-ordering Fe3O4 (VASP, LMTO)
30
Pyrochlore Cd2Re2O7 Lattice type : fcc 88 atoms in cubic unit cell
Space group : Fd3m a = A, x=0.316 Ionic model: Cd+2(4d10), Re+5(5d2), O-2(2p6) U(Cd) = 5.5 eV, U(Re) = 3.0 eV J = 0 eV (no spin moment)
31
Pyrochlore structure
32
K. D. Tsuei, SRRC Re-5d-t2g Re-5d-eg Cd-5s Cd-5p Re-7s
33
PRB 66 (2002) 12516 O-2p Cd-4d Re-5d-t2g
34
PRB 66 (2002) 12516
35
Pyrochlore Cd2Re2O7 LDA unoccupied DOS agree well with XAS data from K. D. Tsuei, SRRC Cd-4d band from LDA is ~3 eV higher than photo emission spectrum (PRB66(2002)1251) Cd-4d band from LDA+U agree well with photo emission spectrum (PRB66(2002)1251) Cd-4d orbital is close to localized electron picture, whereas the other orbitals are more or less itinerant
36
Rutile CrO2 Half-metal, moment = 2μB Lattice type : bct
6 atoms in bct unit cell Space group : P42/mnm a = 4.419A, c=2.912A, u=0.303 Ionic model : Cr+4(3d2), O-2(2p6) U = 3.0 eV, J = 0.87 eV
37
Rutile structure
39
PRB 56 (1997) 15509
40
Spin and orbital magnetic moments of CrO2
(uB) Spin moment Orbital moment Cr O Total LDA 1.89 -0.042 2.00 -0.037 LDA+U 1.99 -0.079 -0.051 Exp. 2 -0.05* -0.003* * D. J. Huang et al, SRRC
41
Rutile CrO2 LDA+U enhances the gap and the exchange splitting at the Fermi level LDA+U also gives larger spin and orbital magnetic moment U≦W, orbital moment quenched, →stronger hybridization, stronger crystal field, → close to itinerant picture
42
Double perovskites : Sr2FeMoO6, Sr2FeReO6, Sr2CrWO6
Half-metal, moment = 4, 3, 2μB Lattice type : tet, fcc, fcc 40 atoms in tet, fcc, fcc unit cell Space group : I4/mmm, Fm3m, Fm3m a = 7.89, 7.832, 7.878A, c/a=1.001, 1, 1 Ionic model : Fe+3(3d5), Cr+3(3d3), Mo+5(4d1), Re+5(5d2), W+5(5d1) U(Fe,Cr) = 4,3 eV, J(Fe,Cr) = 0.89, 0.87 eV
43
Double perovskite structure
44
LDA LDA+U SFMO SFMO SFRO SFRO SCWO SCWO
45
spin moment orbital moment Sr2FeMoO6 GGA GGA+U Fe Mo total Fe Mo Sr2FeReO6 Fe Re total Fe Re Sr2CrWO6 Cr W total Cr W
46
GGA m = -2 -1 0 +1 +2 Fe 3d ↑ Fe 3d ↓ Re 5d ↑ Re 5d ↓
Occupation number of d orbital in Sr2FeReO6 GGA m = Fe 3d ↑ Fe 3d ↓ Re 5d ↑ Re 5d ↓ GGA+U
47
GGA m = -2 -1 0 +1 +2 Cr 3d ↑ Cr 3d ↓ W 5d ↑ W 5d ↓
Occupation number of d orbital in Sr2CrWO6 GGA m = Cr 3d ↑ Cr 3d ↓ W 5d ↑ W 5d ↓ GGA+U m =
49
Double perovskites : Sr2FeMoO6, Sr2FeReO6, Sr2CrWO6
LDA+U has significant effects on DOS, but experimental data is not available Orbital moment of 3d and 4d elements are all quenched because of strong crystal field 5d elements exhibit large unquenched orbital moment because of strong spin-orbit interaction in 5d orbitals
50
Magnetite (high temperature) : Fe3O4, CoFe2O4, NiFe2O4
Half-metal, insulator, moment = 4, 3, 2μB Lattice type : fcc Space group : Fd3m 56 atoms in fcc unit cell a = 8.394, 8.383, A Ionic model : Fe+3(3d5), Fe+2(3d6), Co+2(3d7), Ni+2(3d8) U(Fe+3,Fe+2,Co+2,Ni+2)=4.5, 4.0, 7.8, 8.0eV J(Fe,Co,Ni) = 0.89, 0.92, 0.95eV
51
Spinel structure
52
Fe3O4
54
CoFe2O4 LDA LDA+U, U(Fe)=4.5eV, U(Co)=7.8eV
55
NiFe2O4 LDA LDA+U, U(Fe)=4.5eV, U(Ni)=8eV
56
Spin and orbital magnetic moments of Fe3O4
(uB) Spin moment Orbital moment Fe(A) Fe(B) Total LDA -3.31 3.52 4.00 -0.018 0.039 GGA -3.44 3.60 -0.016 0.038 LDA+U -3.81 3.81 -0.014 0.21 Exp. -3.8+ 4.1 0.2~0.4* +J. Phys. C 11 (1978) 4389 * D. J. Huang et al, SRRC
57
Spin and orbital magnetic moments of Fe3O4
(uB) Spin moment Orbital moment LDA+U Fe(A) Fe(B) Total LMTO -3.81 3.81 4.00 -0.014 0.21 VASP -3.87 3.78 -0.028 0.033 WIEN2k# -3.95 3.84 -0.015 0.036 -3.35 3.47 -0.025 0.078 Exp. -3.8 4.1 0.2~0.4 # Physica B 312 (2002) 785
58
Occupation numbers in Fe-3d orbitals of Fe3O4 from LDA and LDA+U
Fe(B)-3d↑ .9445 .9426 .9443 .9418 .9425 Fe(B)-3d↓ .2166 .2072 .2286 .2266 .2288 LDA+U .9680 .9518 .9815 .9513 .9674 .1732 .08830 .1784 .3563 .1531
59
Fe3O4
60
Spin, orbital, and total magnetic moments for magnetite from LDA+U and experiment
(uB) Spin Orbit Total total Fe3O4 4.0 0.42 4.42 0.4~0.8* 4.1 CoFe2O4 3.0 ~0.4 ~3.4 0.8~1.2+ 3.9 NiFe2O4 2.0 0.24 2.24 1.94 0.26# 2.2 D. J. Huang et al, SRRC + H. J. Lin et al, SRRC # G. V. D. Laan, PRB59, 4314 (1999)
61
Magnetite (high temperature) : Fe3O4, CoFe2O4, NiFe2O4
LDA+U gives better DOS for Fe3O4 LDA+U gives insulating ground states for CoFe2O4 and NiFe2O4 Spin moment of Fe3O4 from LDA+U agrees better with experimental value On-site U gives large unquenched orbital magnetic moments for Fe(B), Co, and Ni Fe3O4: localized~itinerant electron CoFe2O4, NiFe2O4: localized electron
62
Low-temperature Fe3O4 Insulator Lattice type : monoclinic
Space group : P2/c 56 atoms in monoclinic unit cell a = A, b=5.925 A, c= A β= Ionic model : Fe+3(3d5), Fe+2(3d6) U=4.5 eV, J = 0.89 eV
63
P2/C structure (low-temperature magnetite)
65
LDA LDA+U
66
Charge and spin moment of Fe3O4 in low-temperature phase
LDA Exp.* LDA+U Spin Charge Fe(B1) 3.50 6.62 5.6 6.64 3.64 Fe(B2) 3.58 5.4 6.50 4.08 Fe(B3) 3.47 6.66 6.55 3.98 Fe(B4) 3.54 6.60 3.59 * PRL 87 (2001)
67
Low-temperature Fe3O4 The lattice distortion give rise to a pseudogap at the Fermi level from LDA An insulating ground state is obtained from LDA+U In the meantime, a charge ordered electronic structure is induced by the on-site Hubbard U Lots of works need to be done…….
68
Conclusions Transition-metal oxides: narrower band width, closer to localized electron picture, more or less strongly correlated → LDA+U gives better result than LDA does The on-site Coulomb interaction U is important in these systems Which LDA+U version is better? An overall better LDA+U method is necessary!?
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.