Download presentation
Presentation is loading. Please wait.
Published byJewel Paul Modified over 9 years ago
1
525201 Statistics and Numerical Method Part I: Statistics Week VI: Empirical Model 1/2555 สมศักดิ์ ศิวดำรงพงศ์ somsaksi@sut.ac.th 1
2
2
3
3
4
6-2 Simple Linear Regression Least Square Estimation 4
5
5
6
Simple Linear Regression 6
7
7
8
Residual 8
9
9
10
10
11
General Regression Analysis: Salt Conc. (y) versus Roadway area (x) Salt Conc. (y) = 2.67655 + 17.5467 Roadway area (x) Term Coef SE Coef T P Constant 2.6765 0.868004 3.0836 0.006 Roadway area (x) 17.5467 0.934630 18.7739 0.000 S = 1.79066 R-Sq = 95.14% R-Sq(adj) = 94.87% PRESS = 70.9737 R-Sq(pred) = 94.03% 11
12
12
13
Correlation and Regression The sample correlation coefficient between X and Y is between [-1,1] 13
14
6-3 Multiple Regression 14
15
Multiple Regression The least squares function is given by The least squares estimates must satisfy 15
16
Multiple Regression 16
17
17
18
18
19
Regression Analysis: Pull Strengt versus Wire Length, Die Height ( The regression equation is Pull Strength (y) = 2.26 + 2.74 Wire Length (x1) + 0.0125 Die Height (x2) Predictor Coef SE Coef T P Constant 2.264 1.060 2.14 0.044 Wire Length (x1) 2.74427 0.09352 29.34 0.000 Die Height (x2) 0.012528 0.002798 4.48 0.000 S = 2.28805 R-Sq = 98.1% R-Sq(adj) = 97.9% 19
20
20
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.