Presentation is loading. Please wait.

Presentation is loading. Please wait.

Digital Forensics Dr. Bhavani Thuraisingham The University of Texas at Dallas Lecture #1 Introduction to Data and Applications Security and Digital Forensics.

Similar presentations


Presentation on theme: "Digital Forensics Dr. Bhavani Thuraisingham The University of Texas at Dallas Lecture #1 Introduction to Data and Applications Security and Digital Forensics."— Presentation transcript:

1 Digital Forensics Dr. Bhavani Thuraisingham The University of Texas at Dallas Lecture #1 Introduction to Data and Applications Security and Digital Forensics August 20, 2007

2 Outline l Data and Applications Security - Developments and Directions l Some Emerging Technologies - Digital watermarking, Biometrics, Digital Forensics, - - -

3 Developments in Data and Applications Security: 1975 - Present l Access Control for Systems R and Ingres (mid 1970s) l Multilevel secure database systems (1980 – present) - Relational database systems: research prototypes and products; Distributed database systems: research prototypes and some operational systems; Object data systems; Inference problem and deductive database system; Transactions l Recent developments in Secure Data Management (1996 – Present) - Secure data warehousing, Role-based access control (RBAC); E- commerce; XML security and Secure Semantic Web; Data mining for intrusion detection and national security; Privacy; Dependable data management; Secure knowledge management and collaboration; emerging technologies such as biometrics and digital forensics

4 Developments in Data and Applications Security: Multilevel Secure Databases - I l Air Force Summer Study in 1982 l Early systems based on Integrity Lock approach l Systems in the mid to late 1980s, early 90s - E.g., Seaview by SRI, Lock Data Views by Honeywell, ASD and ASD Views by TRW - Prototypes and commercial products - Trusted Database Interpretation and Evaluation of Commercial Products l Secure Distributed Databases (late 80s to mid 90s) - Architectures; Algorithms and Prototype for distributed query processing; Simulation of distributed transaction management and concurrency control algorithms; Secure federated data management

5 Developments in Data and Applications Security: Multilevel Secure Databases - II l Inference Problem (mid 80s to mid 90s) - Unsolvability of the inference problem; Security constraint processing during query, update and database design operations; Semantic models and conceptual structures l Secure Object Databases and Systems (late 80s to mid 90s) - Secure object models; Distributed object systems security; Object modeling for designing secure applications; Secure multimedia data management l Secure Transactions (1990s) - Single Level/ Multilevel Transactions; Secure recovery and commit protocols

6 Some Directions and Challenges for Data and Applications Security - I l Secure semantic web - Security models l Secure Information Integration - How do you securely integrate numerous and heterogeneous data sources on the web and otherwise l Secure Sensor Information Management - Fusing and managing data/information from distributed and autonomous sensors l Secure Dependable Information Management - Integrating Security, Real-time Processing and Fault Tolerance l Data Sharing vs. Privacy - Federated database architectures?

7 Some Directions and Challenges for Data and Applications Security - II l Data mining and knowledge discovery for intrusion detection - Need realistic models; real-time data mining l Secure knowledge management - Protect the assets and intellectual rights of an organization l Information assurance, Infrastructure protection, Access Control - Insider cyber-threat analysis, Protecting national databases, Role-based access control for emerging applications l Security for emerging applications - Geospatial, Biomedical, E-Commerce, etc. l Other Directions - Trust and Economics, Trust Management/Negotiation, Secure Peer-to-peer computing, Emerging technologies such as digital forensics

8 Emerging Technologies in Data and Applications Security l Digital Identity Management l Identity Theft Management l Digital Watermarking l Risk Analysis l Economic Analysis l Secure Electronic Voting Machines l Biometrics l Digital Forensics

9 Digital Identity Management l Digital identity is the identity that a user has to access an electronic resource l A person could have multiple identities - A physician could have an identity to access medical resources and another to access his bank accounts l Digital identity management is about managing the multiple identities - Manage databases that store and retrieve identities - Resolve conflicts and heterogeneity - Make associations - Provide security l Ontology management for identity management is an emerging research area

10 Digital Identity Management - II l Federated Identity Management - Corporations work with each other across organizational boundaries with the concept of federated identity - Each corporation has its own identity and may belong to multiple federations - Individual identity management within an organization and federated identity management across organizations l Technologies for identity management - Database management, data mining, ontology management, federated computing

11 Identity Theft Management l Need for secure identity management - Ease the burden of managing numerous identities - Prevent misuse of identity: preventing identity theft l Identity theft is stealing another person’s digital identity l Techniques for preventing identity thefts include - Access control, Encryption, Digital Signatures - A merchant encrypts the data and signs with the public key of the recipient - Recipient decrypts with his private key

12 Steganography and Digital Watermarking l Steganography is about hiding information within other information - E.g., hidden information is the message that terrorist may be sending to their pees in different parts of the worlds - Information may be hidden in valid texts, images, films etc. - Difficult to be detected by the unsuspecting human l Steganalysis is about developing techniques that can analyze text, images, video and detect hidden messages - May use data mining techniques to detect hidden patters l Steganograophy makes the task of the Cyber crime expert difficult as he/she ahs to analyze for hidden information - Communication protocols are being developed

13 Steganography and Digital Watermarking - II l Digital water marking is about inserting information without being detected for valid purposes - It has applications in copyright protection - A manufacturer may use digital watermarking to copyright a particular music or video without being noticed - When music is copies and copyright is violated, one can detect two the real owner is by examining the copyright embedded in the music or video

14 Risk Analysis l Analyzing risks - Before installing a secure system or a network one needs to conduct a risk analysis study - What are the threats? What are the risks? l Various types of risk analysis methods - Quantitative approach: Events are ranked in the order of risks and decisions are made based on then risks Qualitative approach: estimates are used for risks

15 Economics Analysis l Security vs Cost - If risks are high and damage is significant then it may be worth the cost of incorporating security - If risks and damage are not high, then security may be an additional cost burden l Economists and technologists need to work together - Develop cost models - Cost vs. Risk/Threat study

16 Secure Electronic Voting Machines l We are slowly migrating to electronic voting machines l Current electronic machines have many security vulnerabilities l A person can log into the system multiple times from different parts of the country and cast his/her vote l Insufficient techniques for ensuring that a person can vote only once l The systems may be attacked and compromised l Solutions are being developed l Johns Hopkins University is one of the leaders in the field of secure electronic voting machines

17 Biometrics l Early Identication and Authentication (I&A) systems, were based on passwords l Recently physical characteristics of a person are being sued for identification - Fingerprinting - Facial features - Iris scans - Blood circulation - Facial expressions l Biometrics techniques will provide access not only to computers but also to building and homes l Other Applications

18 Digital Forensics l Digital forensics is about the investigation of crime including using digital/computer methods l More formally: “Digital forensics, also known as computer forensics, involved the preservation, identification, extraction, and documentation of computer evidence stored as data or magnetically encoded information”, by John Vacca l Digital evidence may be used to analyze cyber crime (e.g. Worms and virus), physical crime (e.g., homicide) or crime committed through the use of computers (e.g., child pornography)

19 Digital Forensics - II l The steps include the following: - When a crime occurs, law enforcement officials gather every piece of evidence including information from the crime scene as well as from the computers - The evidence gathered is analyzed - Techniques include l Intrusion detection l Data Mining l Analyzing log files l Analyze email messages l Lawyers, Psychologists, Sociologists, Crime investigators and Technologists have to work together l International Journal of Digital Evidence is a useful source

20 Information Sharing between Trustworthy, Semi- trustworthy and Untrustworthy Partners Export Data/Policy Component Data/Policy for Agency A Data/Policy for Federation Export Data/Policy Component Data/Policy for Agency C Component Data/Policy for Agency B Export Data/Policy


Download ppt "Digital Forensics Dr. Bhavani Thuraisingham The University of Texas at Dallas Lecture #1 Introduction to Data and Applications Security and Digital Forensics."

Similar presentations


Ads by Google