Download presentation
Presentation is loading. Please wait.
1
What is positive selection?
dN = rate of nonsynonymous substitution dS = rate of synonymous substitution Let ratio = ratio of dN/dS
2
Positive selection occurs when the ratio exceeds unity
__________________________________ Type of Selection Outcome Purifying selection dN/dS < 1 No selection dN/dS = 1 Positive selection dN/dS > 1
3
How do we test for positive selection?
1. Estimate means and variances of dN and dS for all pair-wise species comparisons. 2. Use t-test to determine if dN and dS differ significantly.
4
Some problems… 1. Averages over all amino acid positions in a protein.
5
Some problems… 1. Averages over all amino acid positions in a protein.
2. Averages over all lineages.
6
Some problems… 1. Averages over all amino acid positions in a protein.
2. Averages over all lineages. 3. Can detect positive selection only when it is very strong and consistent through evolutionary time.
7
Some more problems… Ignores the phylogenetic framework in which adaptive molecular evolution occurs!
8
Suppose a significant ratio is detected between cow and pig
1. Cow --- ns ns ns ns 2. Deer ns ns ns ns 3. Whale ns ns ns 4. Hippo ns ns 5. Pig ns 6. Camel ns = non significant
9
A phylogenetic perspective
> 1? > 1? Cow > 1? Deer Whale > 1? Hippo Pig Camel Outgroup
10
An example: lysozyme evolution in colobine monkeys
• Colobine monkeys are leaf-eaters that have evolved a complex foregut (like ruminants). • Stomach expresses a high level of the bacteriolytic enzyme, lysozyme.
11
Phylogeny of Colobines and
Cercopithecines Foregut fermentation evolved Hanuman langur Purple-faced langur Dusky Langur Francois’ Langur Proboscis monkey Guereza colobus Angolan colobus Patas monkey Vervet Talapoin Rhesus macaque Allen’s monkey Olive baboon Sooty mangabey Chimpanzee Colobines Cercopithecines from Messier & Stewart (1997)
12
Phylogeny of Colobines and
Cercopithecines Hanuman langur Purple-faced langur Dusky Langur Francois’ Langur Proboscis monkey Guereza colobus Angolan colobus Patas monkey Vervet Talapoin Rhesus macaque Allen’s monkey Olive baboon Sooty mangabey Chimpanzee = 4.7 Colobines Cercopithecines from Messier & Stewart (1997)
13
A Maximum-Likelihood (ML) approach to the detection of positive selection
14
A Maximum-Likelihood (ML) approach to the detection of positive selection
ML methods evaluate the probability (i.e., likelihood) of obtaining a set of DNA sequences given: a specific phylogenetic tree an explicit model of nucleotide substitution.
15
Some details of the model…
Implemented in the PAML package of Yang (1997) Uses a Markov process to describe substitutions between sense codons Parameters include: transition/transversion ratio () codon frequencies () branch lengths scaled for time (t)
16
Testing for positive selection involves comparing two models:
Model M7: Assumes ratios follow a beta distribution (i.e., constrained in the interval 0-1).
17
Testing for positive selection involves comparing two models:
Model M7: Assumes ratios follow a beta distribution (i.e., constrained in the interval 0-1). Model M8: Adds a second class of sites to M7 at which ratios can exceed unity (i.e., positive selection).
18
Statistical testing can be done by likelihood ratio tests (LRTs)
1. Obtain log likelihood score from model M7, ℓM7 (null model).
19
Statistical testing can be done by likelihood ratio tests (LRTs)
1. Obtain log likelihood score from model M7, ℓM7 (null model). 2. Obtain log likelihood score from model M8, ℓM8 (positive selection).
20
Statistical testing can be done by likelihood ratio tests (LRTs)
1. Obtain log likelihood score from model M7, ℓM7 (null model). 2. Obtain log likelihood score from model M8, ℓM8 (positive selection). 3. Test for significance: X 2 = 2 (ℓM8 – ℓM7 ) with 1 d.f.
21
Advantages of ML approach
1. Allows for formal statistical testing by likelihood ratio tests.
22
Advantages of ML approach
1. Allows for formal statistical testing by likelihood ratio tests. 2. Allows for individual codons subject to positive selection to be identified.
23
Advantages of ML approach
1. Allows for formal statistical testing by likelihood ratio tests. 2. Allows for individual codons subject to positive selection to be identified. 3. Allows for positive selection to be inferred along individual branches of a phylogeny.
24
Application to the pantophysin gene in marine gadid fishes
Pantophysin is an integral membrane protein localized to small (<100 nm) cytoplasmic microvesicles Believed to function in a variety of intracellular shuttling pathways Exact function remains unknown
25
Transmembrane structure of pantophysin
V N E E I F A S F N Y P F R L M T S I V A L S Q P S P P S D V C Lumen of microvesicle G T P V Q Y T R K C T D S Q K N G A G V T T E S W N N F K C T I L V A G S Y N G I D S T T T P V T S S L H G A G M S E K G Y F G R S F W L A V A N T S S A T I S S A G S V F V V I A L L F Microvesicle membrane F S W G I F L F S L F L F Y A N I S L L L T A I E A A L L S T W V L V G R V F S I L L N F Y D C P L V V W F L G P I P F G Y E E R K K H S E Q P E D A P L L T T N E P T-COOH P Y K P A A G R R F H K S R F G G Q A Cytoplasm V L Q N V V D M-NH2
26
Transmembrane structure of pantophysin
V N E E I F A S F N Y P F R L M T S I V A L S Q P S Intra- vesicular domains P P IV1 S D V C Lumen of microvesicle G T P V Q Y T R K C T D S Q K N G A G V T T E S W N IV2 N F K C T I L V A G S Y N G I D S T T T P V T S S L H G A G M S E K G Y F G R S F W L A V A N T S S A T I S S A G S V Trans- Membrane (TM) domains F V V I A L L F Microvesicle membrane F S W G I F L F S L F L F Y A N I S L L L T A I E A A L L S T W V L V G R V F S I L L N F Y D C P L V V W F L G P I P F G Y Cytoplasmic (Cyt) domains E E R K K H S E Q P E D A P L L T T N E P T-COOH P Y K P A A G R R F H K S R F G G Q A Cytoplasm V L Q N V V D M-NH2
27
Genealogy of PanI alleles in the Atlantic cod PanIA alleles (N = 64)
BA105A Genealogy of PanI alleles in the Atlantic cod BA108A BA107A BS39A BA143A BA112A BS21A BS29A IC74A IC70A BS71A BA115A BA126A BS72A BA128A BS49A BS81A BA132A BS53A BS87A NS1A NS12A NS79A NS73A NS28A PanIA alleles (N = 64) 100 NS34A NS91A NS41A NS74A NS58A IC30A IC2A NF42A NF24A NF142A NF94A NF88A NF162A NF158A BA140A BA138A BA149A BS20A NF17A NS83A NF73A BS31A BS64A NS70A NS68A IC8A IC6A IC9A IC80A IC41A IC42A IC78A IC61A NF6A NF11A NF56A NF36A BA105B BA108B BA107B BA112B NS1B BA128B BA126B BA115B NF88B BA138B BA132B BA143B BA140B BA149B BS20B BS21B BS31B BS29B BS39B BS53B BS49B PanIB alleles (N = 64) BS64B BS71B BS81B BS72B BS87B NS12B NS68B NS41B NS28B NS70B NS91B NS74B IC6B IC2B IC8B IC30B IC25B IC41B 100 IC42B IC61B IC70B IC78B IC74B NF11B IC80B NF36B NF24B 1 change NF73B NF56B NS34B NF158B NF94B NF17B NF6B NS58B NF162B NS73B NS83B NS79B NF42B Gadus ogac NF142B
28
Amino acid differences between PanIA and PanIB alleles
V N E E I F A S F N Y P F R L M T S I V A L S Q P S P P S D V C Lumen of microvesicle G T P V Q Y T R K C IV1 T D S Q K N G A G V T T E S W N N F K C T I L V A G S Y N G I D S T T T P V T S S L H G A G M S E K G Y F G R S F W L A V A N T S S A T I S S A G S V F V V I Microvesicle membrane A L L F F S W G I F L F S L F L F Y A N I S L L L T A I E A A L L S T W V L V G R V F S I L L N F Y D C P L V V W F L G P I P F G Y E E R K K H S E Q P E D A P L L T T N E P T-COOH P Y K P A A G R R F H K S R F G G Q A Cytoplasm V L Q N V V D M-NH2
29
Amino acid substitutions within PanI allelic classes
___________________________________________________________ Codon Amino Acid Distribution Allele Position Change Location Classificationa in sample PanIA Lys to Gln IV Radical Fixed Asn to Thr IV Radical Fixed Ser to Thr IV Radical Fixed PanIB Glu to Val IV Radical Fixed Lys to Asn IV Radical Fixed Asn to Asp IV Radical Fixed a following Taylor (1986)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.