Presentation is loading. Please wait.

Presentation is loading. Please wait.

Elastic Data Partitioning for Cloud-based SQL Processing Systems Lipyeow Lim Information & Computer Science Department University of Hawai`i at Mānoa 9/8/20101Lipyeow.

Similar presentations


Presentation on theme: "Elastic Data Partitioning for Cloud-based SQL Processing Systems Lipyeow Lim Information & Computer Science Department University of Hawai`i at Mānoa 9/8/20101Lipyeow."— Presentation transcript:

1 Elastic Data Partitioning for Cloud-based SQL Processing Systems Lipyeow Lim Information & Computer Science Department University of Hawai`i at Mānoa 9/8/20101Lipyeow Lim -- University of Hawai`i at Manoa

2 Outline 9/8/2010Lipyeow Lim -- University of Hawai`i at Manoa2

3 DBMS Shared Nothing Parallel DBMS 1/14/2013Lipyeow Lim -- University of Hawaii at Manoa3 DBMS query results Network Parallel DB layer

4 Cloud-based Architecture 1/14/2013Lipyeow Lim -- University of Hawaii at Manoa4 (Virtualized) Network Disk Memory CPU Disk Memory CPU Disk Memory CPU Disk Memory CPU Amazon EC2 Physical Resources Virtual Machines

5 DBMS “Scaling” Up and Down 1/14/2013Lipyeow Lim -- University of Hawaii at Manoa5 Network Parallel DB layer DBMS query results

6 Problem Statement Given A relation T A partitioning function F on a fixed partitioning key An initial number p of partitions/fragments An initial mapping of p fragments to p database nodes A target number q of partitions Find a mapping of {T1, T2,.. Tp} to {T1, T2,... Tq} and an assignment of the q fragments to q database nodes Such that we minimize The number of tuples re-partitioned The number of tuples moved between database nodes 9/8/2010Lipyeow Lim -- University of Hawai`i at Manoa6

7 Partitioning a Relation Partitioning attribute/key. Partitioning type. Eg. Range or Hash Partitioning constraint. Eg. Equi-width, equi-size Number of partitions/fragments. 9/8/2010Lipyeow Lim -- University of Hawai`i at Manoa7 2 4 6 7 13 20 : 2 4 6 7 13 20 : 2 4 6 7 13 20 : 2 4 6 7 13 20 : hash function

8 Horizontal Fragmentation: Range Partition sidsnameratingage 22dustin745 29brutus133 31lubber855 32andy423 58rusty1035 64horatio735 1/14/2013Lipyeow Lim -- University of Hawaii at Manoa8 sidsnameratingage 29brutus133 32andy423 sidsnameratingage 22dustin745 31lubber855 58rusty1035 64horatio735 Range Partition on rating column Partition 1: 0 <= rating < 5 Partition 2: 5 <= rating <= 10 Partition 1 Partition 2

9 Range Partition: Query Processing Which partitions? Better than non-parallel ? 1/14/2013Lipyeow Lim -- University of Hawaii at Manoa9 sidsnameratingage 29brutus133 32andy423 sidsnameratingage 22dustin745 31lubber855 58rusty1035 64horatio735 Partition 1 Partition 2 SELECT * FROM Sailors S SELECT * FROM Sailors S WHERE rating = 2 SELECT * FROM Sailors S WHERE rating < 2 and age < 30 SELECT * FROM Sailors S WHERE age > 30

10 Partition 1 Partition 2 Horizontal Fragmentation: Hash Partition Hash partitioning using hash function – Partition = rating mod 2 1/14/2013Lipyeow Lim -- University of Hawaii at Manoa10 sidsnameratingage 22dustin745 29brutus133 31lubber855 32andy423 58rusty1035 64horatio735 sidsnameratingage 31lubber855 32andy423 58rusty1035 sidsnameratingage 22dustin745 29brutus133 64horatio735

11 Hash Partition: Query Processing Which partitions? Better than non-parallel ? 1/14/2013Lipyeow Lim -- University of Hawaii at Manoa11 SELECT * FROM Sailors S SELECT * FROM Sailors S WHERE rating = 2 SELECT * FROM Sailors S WHERE rating < 2 and age < 30 SELECT * FROM Sailors S WHERE age > 30 Partition 1 Partition 2 sidsnameratingage 31lubber855 32andy423 58rusty1035 sidsnameratingage 22dustin745 29brutus133 64horatio735

12 Method N: Naive Resize 9/8/2010Lipyeow Lim -- University of Hawai`i at Manoa12

13 Method C : Chunk-based 9/8/2010Lipyeow Lim -- University of Hawai`i at Manoa13

14 Method T : Tree-based 9/8/2010Lipyeow Lim -- University of Hawai`i at Manoa14

15 Method H : Hash-based 9/8/2010Lipyeow Lim -- University of Hawai`i at Manoa15

16 9/8/2010Lipyeow Lim -- University of Hawai`i at Manoa16

17 9/8/2010Lipyeow Lim -- University of Hawai`i at Manoa17

18 9/8/2010Lipyeow Lim -- University of Hawai`i at Manoa18

19 9/8/2010Lipyeow Lim -- University of Hawai`i at Manoa19


Download ppt "Elastic Data Partitioning for Cloud-based SQL Processing Systems Lipyeow Lim Information & Computer Science Department University of Hawai`i at Mānoa 9/8/20101Lipyeow."

Similar presentations


Ads by Google