Download presentation
Presentation is loading. Please wait.
Published byJack Todd Modified over 9 years ago
1
Visual Cryptography for Gray-Level Images by Dithering Techniques
Author:Chang-Chou Lin, Wen-Hsiang Tsai Source:Pattern Recognition Letters 24 (2003) Speaker:Shu-Fen Chiou(邱淑芬)
2
Outline Introduction Space-filling Curve Ordered Dithering (SFCOD)
(k, n)-threshold visual encryption of gray-level images Experimental results Conclusions Comments
3
Introduction (1/2) Input a gray-level image Share image1
Transform by SFCOD decode encode Apply (2, 2) visual cryptography The decoded image An approximate binary image Share image2
4
Introduction (2/2) Binary images are usually restricted to represent text-like messages. Verheul and van Tilborg (1997) first tried to extend visual cryptography into gray-level images, but their method has the disadvantage of size increase in the decoded image.
5
Space-filling Curve Ordered Dithering (SFCOD)
Yuefeng Zhang Comput. & Graphics, Vol. 22 No.4, pp , 1998
6
Hilbert curve Rule Iteration = 0 Iteration = 1 Iteration = 2
7
Subdividing a 88 image into 4 4 regions by using a Hilbert curve
7 7 7 10 1 2 3 4 7 6 5 8 9 11 12 15 13 14 48 51 52 53 49 50 55 54 62 61 56 57 63 60 59 58 42 41 38 37 43 40 39 36 44 45 34 35 47 46 33 32 26 25 22 21 27 24 23 20 28 29 18 19 31 30 17 16 5 6 9 10 5 6 9 10 6 6 6 4 7 8 11 4 7 8 11 5 5 5 3 2 13 12 3 2 13 12 4 4 4 1 14 15 1 14 15 3 3 3 15 12 11 10 5 4 3 2 2 2 14 13 8 9 6 7 2 1 1 1 1 1 2 7 6 9 8 13 14 3 4 5 10 11 12 15 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
8
Dithering Technique (1/3)
PROCEDURE SFCOD (M, B, t ,I ,H) BEGIN FOR i = 0 TO m – 1 DO FOR j = 0 TO m – 1 DO IF I (i, j) /256 ≥ (B (M (i, j) MOD t )+0.5)/ t THEN H (i, j) = 1(白色) ELSE H (i, j) = 0 ;(黑色) END 定義 I:大小為m*m的灰階影像 M(i, j):traversal-order number B:space-filling curve dither array t:array length H(i, j):轉 binary image 後的 pixel value
9
Dithering Technique (2/3)
Step1: Gray-level image I with mm. Step2: Divide I into many pixels of a block. Step3: Transform each gray block into binary block M(0,0) I(0,0) 1 2 3 4 5 6 7 10 8 9 11 12 15 13 14 48 51 52 53 49 50 55 54 62 61 56 57 63 60 59 58 42 41 38 37 43 40 39 36 44 45 34 35 47 46 33 32 26 25 22 21 27 24 23 20 28 29 18 19 31 30 17 16 Original Image I Hilbert curve order t=4, t<=M
10
Dithering Technique (3/3)
Space-filling curve dither array B, size(B)=t 作用在於打亂, B 對於每一個block 可以Fixed or not fixed t=4 B(0)=1, B(1)=0, B(2)=2, B(3)=3
11
Example of Dithering Technique
Step1: y=I(0,0)/256=100/256= Step2: x=M(i, j) mod t = M(0, 0) mod 4= 21 mod 4=1 Step3: B(x)=B(1)= B(0)=1, B(1)=0, B(2)=2, B(3)=3 Step4: q= (B(x)+0.5) / t =(0+0.5)/4=0.125 Step5: Test (y >= q) ? If yes, white color else black color.
12
(k, n)-threshold visual encryption of gray-level images
Verheul and van Tilborg, 1997 We describe an example for the case of a (3, 3)-threshold scheme. If there are 3 gray levels original image.
13
An example (1/4) Gray-level 0 Gray-level 1 Gray-level 2 original image
14
An example (2/4) share1 share2 share3 0 0 0 1 1 1 2 2 2
share1 A0 = share2 share3 A1 = A2 =
15
An example (3/4) C0 = { all the matrices obtained by permuting the columns of A0 } C1 = { all the matrices obtained by permuting the columns of A1 } C2 = { all the matrices obtained by permuting the columns of A2 } EX: A0 = A1 = original image share1 share2 share3 result A2 =
16
An example (4/4) (k, n)-threshold visual cryptography k = 3, n = 3
share1 share2 share3 (k, n)-threshold visual cryptography k = 3, n = 3 size increase ck-1 at least when c ≥ n Decoding image
17
Experimental results (1/2)
The original image with 16 gray levels The image after using SFCOD
18
Experimental results (2/2)
share1 + The decoded image share2
19
A person authentication application
Public key Secret key authentication Encrypting a portrait of the user
20
Conclusions This scheme possesses the advantages of inheriting any developed cryptographic technique for binary images and having less increase of image size in ordinary situations. EX: If there are 3 gray levels original image before this scheme 33-1 = 9 times 4 times
21
Comments 可以直接用灰階影像或是彩色影像來做視覺密碼學。 還原的影像可以和原始影像的尺寸大小一樣。
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.