Presentation is loading. Please wait.

Presentation is loading. Please wait.

I II X X Statements Reasons 1.

Similar presentations


Presentation on theme: "I II X X Statements Reasons 1. "β€” Presentation transcript:

1 I II X X Statements Reasons 1. 𝐴𝐡 β‰… 𝐴𝐢 1. Given 2. 𝑅𝐡 β‰… 𝑅𝐢 2. Given
1. 𝐴𝐡 β‰… 𝐴𝐢 1. Given II 2. 𝑅𝐡 β‰… 𝑅𝐢 2. Given X X 3. 𝐴𝑅 β‰… 𝐴𝑅 3. βˆ‘π‘π‘‹π½β‰…βˆ‘π‘π‘ŒπΎ 3. Reflexive Postulate 4. βˆ†π΄π΅π‘…β‰…βˆ†π΄πΆπ‘… 4. 𝑆𝑆𝑆≅𝑆𝑆𝑆 5. Corresponding parts of congruent triangles are congruent 5. βˆ‘π΄π‘…π΅β‰…βˆ‘π΄π‘…πΆ 6. Angles on a line 6. βˆ‘π΅π‘…π‘† π‘Žπ‘›π‘‘ βˆ‘π΄π‘…π΅ are supplements βˆ‘πΆπ‘…π‘† π‘Žπ‘›π‘‘ βˆ‘π΄π‘…πΆ are supplements 7. βˆ‘π‘ƒβ‰…βˆ‘π‘ƒ 7. Complements of congruent angles are congruent 7. βˆ‘π΅π‘…π‘†β‰…βˆ‘πΆπ‘…π‘† 8. 𝑅𝑆 β‰… 𝑅𝑆 8. Reflexive Postulate 9. βˆ†π‘…π΅π‘†β‰…βˆ†π‘…πΆπ‘† 9. 𝑆𝐴𝑆≅𝑆𝐴𝑆 10. Corresponding parts of congruent triangles are congruent 𝑆𝐡 β‰… 𝑆𝐢

2 I II Statements Reasons 1. 𝑱𝑲 β‰… 𝑱𝑳 1. Given 2. 𝑱𝑿 β‰… 𝑱𝒀 2. Given I
1. 𝑱𝑲 β‰… 𝑱𝑳 1. Given 2. 𝑱𝑿 β‰… 𝑱𝒀 2. Given I 3. βˆ‘π‘²β‰…βˆ‘π‘³ 3. In a triangle (KJL) angles opposite congruent sides are congruent 4. βˆ‘π‘±π‘Ώπ’€β‰…βˆ‘π‘±π’€π‘Ώ 4. In a triangle (JXY) angles opposite congruent sides are congruent 6. Angles on a line 6. βˆ‘π‘±π‘Ώπ’€ 𝒂𝒏𝒅 βˆ‘π‘±π‘Ώπ‘² are supplements βˆ‘π‘±π’€π‘Ώ 𝒂𝒏𝒅 βˆ‘π‘±π’€π‘³ are supplements 7. βˆ‘π‘±π‘Ώπ‘²β‰…βˆ‘π‘±π’€π‘³ 7. Complements of congruent angles are congruent 8. βˆ†π‘±π‘²π‘Ώβ‰…βˆ†π‘±π‘³π’€ 8. 𝑨𝑨𝑺≅𝑨𝑨𝑺 9. 𝑲𝑿 β‰… 𝑳𝒀 9. Corresponding parts of congruent triangles are congruent

3 Lesson 8 - Properties of Parallelograms
Unit 3 Lesson 8 - Properties of Parallelograms

4 No, not based on the immediate evidence.
Is 𝐴𝑇 congruent to 𝐽𝑀 ? No, not based on the immediate evidence. What relationship does 𝐴𝑇 have to 𝐽𝑀 ? 𝐴𝑇 βˆ₯ 𝐽𝑀 Is βˆ‘π‘‡ congruent to ∑J, why? Yes, they are alternate interior angles. βˆ†π΄πΊπ‘‡β‰…βˆ†π‘€π‘Œπ½ S𝐴𝐴≅𝑆𝐴𝐴 π½π‘Œ

5 - a quadrilateral with both pairs of opposite sides parallel quad
Prior knowledge: - prefix meaning four *** four-sided figure - meaning side - a quadrilateral with both pairs of opposite sides parallel quad lateral

6 Note: A and C can be the obtuse angles or the acute angles
1 2 4 3 A B C D 𝐴𝐡𝐢𝐷 𝑖𝑠 π‘Ž π‘π‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’π‘™π‘œπ‘”π‘Ÿπ‘Žπ‘š X Opposite sides and opposite angles are congruent Statements Reasons 1. 𝐴𝐡𝐢𝐷 𝑖𝑠 π‘Ž π‘π‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’π‘™π‘œπ‘”π‘Ÿπ‘Žπ‘š 1. Given D 2. 𝐴𝐡 βˆ₯ 𝐷𝐢 and 𝐴𝐷 βˆ₯ 𝐡𝐢 2. Opposite sides of a parallelogram are parallel 3. ∑1 β‰… ∑2 and ∑3 β‰… ∑4 3. When parallel lines are cut by a transversal the alternate interior angles are congruent 4. 𝐷𝐡 β‰… 𝐷𝐡 4. Reflexive postulate 5. βˆ†π΄π΅π·β‰…βˆ†πΆπ·π΅ 5. 𝐴𝑆𝐴≅𝐴𝑆𝐴 6. CPCTC 6. 𝐴𝐷 β‰… 𝐢𝐡 and 𝐴𝐡 β‰… 𝐢𝐷 7. ∑𝐴 β‰… ∑C 7. CPCTC Therefore, in a parallelogram the opposite sides and opposite angles are congruent

7 l V 𝐴𝐡𝐢𝐷 𝑖𝑠 π‘Ž π‘π‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’π‘™π‘œπ‘”π‘Ÿπ‘Žπ‘š The diagonals bisect each other Statements
Reasons 1. ABCD is a parallelogram 1. Given 2. AB βˆ₯ DC 2. Opposite sides of a parallelogram are parallel 3. ∑1 β‰… ∑2 and ∑3 β‰… ∑4 3. When parallel lines are cut by a transversal the alternate interior angles are congruent 4. AB β‰… DC 4. Opposite sides of a parallelogram are congruent 5. βˆ†ABEβ‰…βˆ†CDE 5. ASAβ‰…ASA 6. CPCTC 6. BE β‰… DE and AE β‰… CE 7. A bisector divides a segment into two congruent segments 7. The diagonals bisect each other

8 II I X Statements Reasons
Quadrilateral ABCD, with opposite sides congruent X 𝑨𝑩π‘ͺ𝑫 π’Šπ’” 𝒂 π’‘π’‚π’“π’‚π’π’π’†π’π’π’ˆπ’“π’‚π’Ž I Statements Reasons 1. Quadrilateral ABCD, with opposite sides congruent 1. Given 2. 𝑫𝑩 β‰… 𝑫𝑩 2. Reflexive postulate 3. βˆ†π‘¨π‘©π‘«β‰…βˆ†π‘ͺ𝑫𝑩 3. 𝑺𝑺𝑺≅𝑺𝑺𝑺 4. ∑𝟏 β‰… ∑2 and βˆ‘πŸ‘ β‰… ∑4 4. CPCTC 5. When two lines are cut by a transversal, making the alternate interior angles are congruent, the lines are parallel. 5. 𝑨𝑩 βˆ₯ 𝑫π‘ͺ and 𝑨𝑫 βˆ₯ 𝑩π‘ͺ 6. 𝑨𝑩π‘ͺ𝑫 π’Šπ’” 𝒂 π’‘π’‚π’“π’‚π’π’π’†π’π’π’ˆπ’“π’‚π’Ž 6. A quadrilateral with two pairs of opposite sides parallel is a parallelogram

9 Homework – Page 38


Download ppt "I II X X Statements Reasons 1. "

Similar presentations


Ads by Google