Download presentation
Presentation is loading. Please wait.
Published bySusanna Ross Modified over 9 years ago
1
The world before DCM
2
Linear regression models of connectivity Structural equation modelling (SEM) y1y1 y3y3 y2y2 b 12 b 32 b 13 z1z1 z2z2 z3z3 0 b 12 b 13 y 1 y 2 y 3 = y 1 y 2 y 3 0 0 0 + z 1 z 2 z 3 0 b 32 0 y – time series b - path coefficients z – residuals (independent) Minimises difference between observed and implied covariance structure Limits on number of connections (only paths of interest) No designed input - but modulatory effects can enter by including bilinear terms as in PPI
3
Different models are compared that either include or exclude a specific connection of interest Goodness of fit compared between full and reduced model: - Chi 2 – statistics Example from attention to motion study: modulatory influence of PFC on V5 – PPC connections Linear regression models of connectivity Inference in SEM – comparing nested models H 0 : b 35 = 0
4
Modulatory interactions at BOLD versus neuronal level HRF acts as low-pass filter especially important in high frequency (event-related) designs Facit: either blocked designs or hemodynamic deconvolution of BOLD time series – incorporated in SPM2 Gitelman et al. 2003
5
A brave new world
6
Z2Z2 Z1Z1 Z2Z2 Z4Z4 Z3Z3 Z5Z5 Basics
7
Z2Z2 Z1Z1 Z2Z2 Z4Z4 Z3Z3 Z5Z5 Latent (intrinsic) connectivities: a
8
Z2Z2 Z1Z1 Z2Z2 Z 4 = a 42 z 2 Z3Z3 Z5Z5 Basics Latent (intrinsic) connectivities: a
9
Increase: Z = 1 - e (-t/r) r = time constant in [s] r = 1s t=1s Z = 1 - e -1 = 63% r = 2s t=1s Z = 1 - e -1/2 = 30% Short r fast increase Rate = 1/r in [1/s] or Hz Long rate fast increase ms
10
Z2Z2 Z1Z1 Z2Z2 ż 4 = a 42 z 2 Z3Z3 Z5Z5 Basics Latent (intrinsic) connectivities: a
11
Z2Z2 Z1Z1 Z2Z2 ż 4 = a 42 z 2 + a 45 z 5 Z3Z3 Z5Z5 Basics Latent (intrinsic) connectivities: a
12
Z2Z2 Z1Z1 ż 4 = a 42 z 2 + a 45 z 5 ż 5 = a 53 z 3 + a 54 z 4 ż 3 = a 35 z 5 ż 2 = a 21 z 1 + a 23 z 3 Basics Latent (intrinsic) connectivities: a
13
Z2Z2 Z1Z1 ż 4 = a 44 z 4 + a 42 z 2 + a 45 z 5 ż 5 = a 53 z 3 + a 54 z 4 ż 3 = a 35 z 5 ż 2 = a 21 z 1 + a 23 z 3 Basics Latent (intrinsic) connectivities: a
14
Z2Z2 ż 4 = a 44 z 4 + a 42 z 2 + a 45 z 5 ż 5 = a 55 z 5 + a 53 z 3 + a 54 z 4 ż 3 = a 35 z 5 + a 35 z 5 ż 2 = a 22 z 2 + a 21 z1+ a 23 z 3 Basics Latent (intrinsic) connectivities: a ż 1 = a 11 z 1
15
Z2Z2 ż 4 = a 44 z 4 + a 42 z 2 + a 45 z 5 ż 5 = a 55 z 5 + a 53 z 3 + a 54 z 4 ż 3 = a 35 z 5 + a 35 z 5 ż 2 = a 22 z 2 + a 21 z1+ a 23 z 3 Basics Latent (intrinsic) connectivities: a ż 1 = a 11 z 1 Stimuli u 1 “perturbation”
16
Z2Z2 ż 4 = a 44 z 4 + a 42 z 2 + a 45 z 5 ż 5 = a 55 z 5 + a 53 z 3 + a 54 z 4 ż 3 = a 35 z 5 + a 35 z 5 ż 2 = a 22 z 2 + a 21 z1+ a 23 z 3 Basics Latent (intrinsic) connectivities: a Extrinsic influences: c ż 1 = a 11 z 1 + c 11 u 1 Stimuli u 1 “perturbation”
17
Z2Z2 ż 4 = a 44 z 4 + a 42 z 2 + a 45 z 5 ż 5 = a 55 z 5 + a 53 z 3 + a 54 z 4 ż 3 = a 35 z 5 + a 35 z 5 ż 2 = a 22 z 2 + a 21 z1+ a 23 z 3 Basics Latent (intrinsic) connectivities: a Extrinsic influences: c ż 1 = a 11 z 1 + c 11 u 1 Stimuli u 1 “perturbation” Set u 2 “context”
18
Z2Z2 ż 4 = a 44 z 4 + a 42 z 2 + a 45 z 5 ż 5 = a 55 z 5 + a 53 z 3 + a 54 z 4 ż 3 = a 35 z 5 + a 35 z 5 ż 2 = a 22 z 2 + a 21 z1+ a 23 z 3 Basics Latent (intrinsic) connectivities: a Extrinsic influences: c ż 1 = a 11 z 1 + c 11 u 1 Stimuli u 1 “perturbation” Set u 2 “context”
19
Z2Z2 ż 4 = a 44 z 4 + a 42 z 2 + a 45 z 5 ż 5 = a 55 z 5 + a 53 z 3 + a 54 z 4 ż 3 = a 35 z 5 + a 35 z 5 ż 2 = a 22 z 2 + a 21 z1+ a 23 z 3 Basics Latent (intrinsic) connectivities: a Induced connectivities: b Extrinsic influences: c ż 1 = a 11 z 1 + c 11 u 1 Stimuli u 1 “perturbation” Set u 2 “context”
20
Z2Z2 ż 4 = a 44 z 4 + a 42 z 2 + a 45 z 5 ż 5 = a 55 z 5 + a 53 z 3 + a 54 z 4 ż 3 = a 35 z 5 + a 35 z 5 ż 2 = a 22 z 2 + a 21 z1 + (a 23 + b 23 u 2 )z 3 Basics Latent (intrinsic) connectivities: a Induced connectivities: b Extrinsic influences: c ż 1 = a 11 z 1 + c 11 u 1 Stimuli u 1 “perturbation” Set u 2 “context”
21
Z2Z2 ż 4 = a 44 z 4 + (a 42 + b 42 u 2) z 2 + a 45 z 5 ż 5 = a 55 z 5 + a 53 z 3 + a 54 z 4 ż 3 = a 35 z 5 + a 35 z 5 ż 2 = a 22 z 2 + a 21 z1 + (a 23 + b 23 u 2 )z 3 Basics Latent (intrinsic) connectivities: a Induced connectivities: b Extrinsic influences: c ż 1 = a 11 z 1 + c 11 u 1 Stimuli u 1 “perturbation” Set u 2 “context”
22
Z2Z2 ż 4 = a 44 z 4 + (a 42 + b 42 u 2) z 2 + a 45 z 5 ż 5 = a 55 z 5 + a 53 z 3 + a 54 z 4 ż 3 = a 35 z 5 + a 35 z 5 ż 2 = a 22 z 2 + a 21 z1 + (a 23 + b 23 u 2 )z 3 Basics Latent (intrinsic) connectivities: a Induced connectivities: b Extrinsic influences: c ż 1 = a 11 z 1 + c 11 u 1 Stimuli u 1 “perturbation” Set u 2 “context” bilinear
23
Z2Z2 ż 4 = a 44 z 4 + (a 42 + b 42 u 2) z 2 + a 45 z 5 ż 5 = a 55 z 5 + a 53 z 3 + a 54 z 4 ż 3 = a 35 z 5 + a 35 z 5 ż 2 = a 22 z 2 + a 21 z1 + (a 23 + b 23 u 2 )z 3 Basics Latent (intrinsic) connectivities: a Induced connectivities: b Extrinsic influences: c ż 1 = a 11 z 1 + c 11 u 1 Stimuli u 1 “perturbation” Set u 2 “context” bilinear
24
Basics
25
Neuron BOLD ?
26
Basics Neuron BOLD BOLD = f(z and 4 state variables) Hemodynamic model: 4 state variables: vasodilatory signal, flow, venous volume, dHb content
27
Bayes
28
A1 WA A2 SPM{F} An example
29
A2 WA A1.. Stimulus (perturbation), u 1 Set (context), u 2
30
A2 WA A1.. Stimulus (perturbation), u 1 Set (context), u 2 Full intrinsic connectivity: a
31
A2 WA A1.. Stimulus (perturbation), u 1 Set (context), u 2 Full intrinsic connectivity: a u 1 activates A1: c
32
A2 WA A1. Stimulus (perturbation), u 1 Set (context), u 2 Full intrinsic connectivity: a u 1 may modulate self connections induced connectivities: b 1 u 1 activates A1: c
33
A2 WA A1. Stimulus (perturbation), u 1 Set (context), u 2 Full intrinsic connectivity: a u 1 may modulate self connections induced connectivities: b 1 u 2 may modulate anything induced connectivities: b 2 u 1 activates A1: c
34
A2 WA A1.92 (100%).38 (94%).47 (98%).37 (91%) -.62 (99%) -.51 (99%).37 (100%) u1u1 u2u2
35
A2 WA A1.92 (100%).38 (94%).47 (98%) u1u1 u2u2 Intrinsic connectivity: a
36
A2 WA A1.92 (100%).38 (94%).47 (98%) u1u1 u2u2 Intrinsic connectivity: a Extrinsic influence: c.37 (100%)
37
A2 WA A1.92 (100%).38 (94%).47 (98%) u1u1 u2u2 Intrinsic connectivity: a Connectivity induced by u 1 : b 1 Extrinsic influence: c.37 (100%) -. 62 (99%) -.51 (99%)
38
A2 WA A1.92 (100%).38 (94%).47 (98%) u1u1 u2u2 Intrinsic connectivity: a Connectivity induced by u 1 : b 1 Extrinsic influence: c.37 (100%) -.62 (99%) -.51 (99%) saturation
39
A2 WA A1.92 (100%).38 (94%).47 (98%) u1u1 u2u2 Intrinsic connectivity: a Connectivity induced by u 1 : b 1 Connectivity induced by u 2 : b 2 Extrinsic influence: c.37 (100%) -.62 (99%) -.51 (99%).37 (91%) saturation
40
A2 WA A1.92 (100%).38 (94%).47 (98%) u1u1 u2u2 Intrinsic connectivity: a Connectivity induced by u 1 : b 1 Connectivity induced by u 2 : b 2 Extrinsic influence: c.37 (100%) -.62 (99%) -.51 (99%).37 (91%) saturation adaptation
41
A2 WA A1.92 (100%).38 (94%).47 (98%) u1u1 u2u2 Intrinsic connectivity: a Connectivity induced by u 1 : b 1 Connectivity induced by u 2 : b 2 Extrinsic influence: c.37 (100%) -.62 (99%) -.51 (99%).37 (91%) saturation adaptation A1 A2 WA
42
Design: moving dots (u 1 ), attention(u 2 ) Another examplec
43
Design: moving dots (u 1 ), attention(u 2 ) SPM analysis: V1, V5, SPC, IFG Another example
44
Design: moving dots (u 1 ), attention(u 2 ) SPM analysis: V1, V5, SPC, IFG Literature: V5 motion-sensitive Another example
45
Design: moving dots (u 1 ), attention(u 2 ) SPM analysis: V1, V5, SPC, IFG Literature: V5 motion-sensitive Previous connect. analyses: SPC mod. V5, IFG mod. SPC Another example
46
Design: moving dots (u 1 ), attention(u 2 ) SPM analysis: V1, V5, SPC, IFG Literature: V5 motion-sensitive Previous connect. analyses: SPC mod. V5, IFG mod. SPC Constraints: - intrinsic connectivity: V1 V5 SPC IFG - u 1 V1 - u 2 : modulates V1 V5 SPC IFG - u 3 : motion modulates V1 V5 SPC IFG Another example
47
Design: moving dots (u 1 ), attention(u 2 ) SPM analysis: V1, V5, SPC, IFG Literature: V5 motion-sensitive Previous connect. analyses: SPC mod. V5, IFG mod. SPC Constraints: - intrinsic connectivity: V1 V5 SPC IFG - u 1 V1 - u 2 : modulates V1 V5 SPC IFG - u 3 : motion modulates V1 V5 SPC IFG (photic) Another example
48
V1 IFG V5 SPC Motion (u 3 ) Photic (u 1 ) Attention (u 2 ).82 (100%).42 (100%).37 (90%).69 (100%).47 (100%).65 (100%).52 (98%).56 (99%) Another example
49
M MM Estimation: Bayes p(N|B) α p(B|N) p(N) posterior likelihoood prior
50
Estimation: Bayes p(N|B) a p(B|N) p(N) Unknown neural parameters: N={A,B,C} Unknown hemodynamic parameters: H Vague priors and stability priors: p(N) Informative priors: p(H) Observed BOLD time series: B. Data likelihood: p(B|H,N) Assumption: all p-distributions Gaussian M, VAR sufficient
51
Normalisation [σ] = 1/s stable system
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.