Download presentation
Presentation is loading. Please wait.
Published byDerek Hensley Modified over 9 years ago
1
BLINDBILD Resonance Multiplets in the Two-Baryon System --- Dibaryons Revisited MesonNet Meeting Prague, June 17 - 19, 2013 Heinz Clement Fachbereich Physik CERN Courier September 2011
2
H. Clement 2Resonances in the Two-Baryon System Two-Baryon Scenario Known knowns: Known knowns: 3 S 1 deuteron groundstate: I (J P ) = 0 (1 + ) 3 S 1 deuteron groundstate: I (J P ) = 0 (1 + ) 1 S 0 virtual state (NN FSI): I (J P ) = 1 (0 + ) 1 S 0 virtual state (NN FSI): I (J P ) = 1 (0 + ) Known unknowns: Known unknowns: Are there six-quark bags (genuine dibaryons)? Are there six-quark bags (genuine dibaryons)? Are there in general resonant states (molecular, dynamic) at all? Are there in general resonant states (molecular, dynamic) at all? Recent experimental findings: Recent experimental findings: 1 D 2 resonance near the N threshold: I (J P ) = 1 (2 + ) 1 D 2 resonance near the N threshold: I (J P ) = 1 (2 + ) ABC resonance structure much below the threshold: I (J P ) = 0 (3 + ) ABC resonance structure much below the threshold: I (J P ) = 0 (3 + ) Are there more states? Are there more states? Model predictions Model predictions Dyson‘s multiplet Dyson‘s multiplet
3
H. Clement 3Resonances in the Two-Baryon System The 1 D 2 Resonance Best seen in pp d , Best seen in pp d , but also in pp pn as well as pp and d scattering (phaseshift analyses) but also in pp pn as well as pp and d scattering (phaseshift analyses) tot ( d pp) Argand plot I (J P ) = 1 (2 + ) M = 2144 MeV = m + m N – 26 MeV = 110 MeV R.A. Arndt et al., PRC 48 (1993) 1926 50 (1994) 1796 56 (1997) 635 N. Hoshizaki, PRC 45 (1992) R1424 Prog. Theor. Phys. 89 (1993) 245 251 563 569 Alternative dynamic description: Diss. C.A. Mosbacher, Bonn 1998
4
H. Clement 4Resonances in the Two-Baryon System The ABC Resonance I (J P ) = 0 (3 + ) “ABC resonance” intr 50 MeV 70 MeV ≤ 1/3 Phys.Rev.Lett.106, 242302 (2011) M 2370 MeV 2m – 90 MeV See talk M. Bashkanov
5
H. Clement 5Resonances in the Two-Baryon System pn R d Δ Δ d π π p n I (J P ) = 0 (3 + ) M, i f, F(q ) M MdMd d*d* model Phys.Rev.Lett.106, 242302 (2011) ABC effect
6
H. Clement 6Resonances in the Two-Baryon System (pN d ) I = 0 + 1 I = 0 I = 1 (pn d ) ½ (pp d ) (pn d ) COSY Annual Report 2012 Phys. Lett. B721 (2013) 229
7
H. Clement 7Resonances in the Two-Baryon System (pN d ) I = 0 + 1 I = 0 I = 1 (pn d ) ½ (pp d ) (pn d )
8
H. Clement 8Resonances in the Two-Baryon System Status of the ABC Resonance decay channel branching status ------------------------------------------------------------------------ d 15 % observed d 25 % observed pp 7 % observed np (12 %, predicted * ) data analysis WASA np (31 %, predicted * ) data analysis HADES np (10 %, predicted) data analysis WASA * Fäldt & Wilkin, PLB 701 (2011) 619 * Fäldt & Wilkin, PLB 701 (2011) 619 Albaladejo & Oset, arXiv:1304.7698 [nucl-theor] Albaladejo & Oset, arXiv:1304.7698 [nucl-theor] See talk M. Bashkanov first results very encouraging!
9
H. Clement 9Resonances in the Two-Baryon System Experiment Bag Model QDCSM ChQM SU(6) Experiment Bag Model QDCSM ChQM SU(6) Mulders et al. Goldman, Ping et al. Huang, Shen et al. Dyson Mulders et al. Goldman, Ping et al. Huang, Shen et al. Dyson PRD 21 (1980) 2653 PRC 79 (2009) 024001 Mod.Phys.Lett.A25(2010)2155 PRL 13 (1964) 815 PRD 21 (1980) 2653 PRC 79 (2009) 024001 Mod.Phys.Lett.A25(2010)2155 PRL 13 (1964) 815 Comparison to predictions from Quark Models 1 + 0 + 2+2+ 3+3+ I = 0 1 0 1 0 1 0 1 0 1 E … … … …
10
H. Clement 10Resonances in the Two-Baryon System … inevitable dibaryon: unique symmetry!
11
H. Clement 11Resonances in the Two-Baryon System I(J P ) = 0(3 + ) state: totally symmetric in space, spin & color antisymmetric in isospin antisymmetric in isospin accessed via as doorway ? accessed via as doorway ? I(J P ) = 0(3 + ) state: totally symmetric in space, spin & color antisymmetric in isospin antisymmetric in isospin accessed via as doorway ? accessed via as doorway ? … inevitable dibaryon NN d* NN NN
12
H. Clement 12Resonances in the Two-Baryon System Dyson‘s Multiplet Prediction
13
H. Clement 13Resonances in the Two-Baryon System State I J Asymptotic Configuration m theor [MeV] m exp [MeV] exp [MeV] --------------------------------------------------------------------------------------------------------------------------------- D 01 0 1 Deuteron 1876 1876 D 01 0 1 Deuteron 1876 1876 D 10 1 0 virtual 1 S 0 1876 1878 D 10 1 0 virtual 1 S 0 1876 1878 D 12 1 2 NN( 1 D 2 ) N NN 2160 2144 110 D 12 1 2 NN( 1 D 2 ) N NN 2160 2144 110 D 21 2 1 N NN 2160 ? ? D 21 2 1 N NN 2160 ? ? D 03 0 3 NN( 3 D 3 ) NN 2350 2370 70 D 03 0 3 NN( 3 D 3 ) NN 2350 2370 70 D 30 3 0 NN 2350 ? ? D 30 3 0 NN 2350 ? ?--------------------------------------------------------------------------------------------------------------------------------- Dyson‘s Prediction
14
H. Clement 14Resonances in the Two-Baryon System State I J Asymptotic Configuration m theor [MeV] m exp [MeV] exp [MeV] --------------------------------------------------------------------------------------------------------------------------------- D 01 0 1 Deuteron 1876 1876 D 01 0 1 Deuteron 1876 1876 D 10 1 0 virtual 1 S 0 1876 1878 D 10 1 0 virtual 1 S 0 1876 1878 D 12 1 2 NN( 1 D 2 ) N NN 2160 2144 110 D 12 1 2 NN( 1 D 2 ) N NN 2160 2144 110 D 21 2 1 N NN 2160 ? ? D 21 2 1 N NN 2160 ? ? D 03 0 3 NN( 3 D 3 ) NN 2350 2370 70 D 03 0 3 NN( 3 D 3 ) NN 2350 2370 70 D 30 3 0 NN 2350 ? ? D 30 3 0 NN 2350 ? ?--------------------------------------------------------------------------------------------------------------------------------- Dyson‘s Prediction
15
H. Clement 15Resonances in the Two-Baryon System A hint for D 21 I(J P ) = 2(1 + ) ? Pionic Double Charge Exchange in Nuclei: Pionic Double Charge Exchange in Nuclei: non-analog transitions: non-analog transitions: A. Wirzba et al., PRC 40 (1989) 2745 M.B. Johnson, L.S. Kisslinger, PLB 168 (1986) 26 intermediate system: ( N) I=2, J P =1 + M 2150 MeV 90 MeV J. Draeger et al., PRC 62 (2000) 064615
16
H. Clement 16Resonances in the Two-Baryon System Conclusions 1 + 0 + 2+2+ 3+3+ I = 0 1 2 3 E 0+0+ 1+1+ Non-Strange Two-Baryon Spectrum Non-Strange Two-Baryon Spectrum 3 established states: 3 S 1 deuteron groundstate 3 established states: 3 S 1 deuteron groundstate 1 S 0 virtual state 1 S 0 virtual state 1 D 2 resonance ( N) 1 D 2 resonance ( N) 1 new - possibly exotic - candidate: 1 new - possibly exotic - candidate: ABC resonance ABC resonance Are there more states? Are there more states? NN-decoupled states with I = 2, 3? NN-decoupled states with I = 2, 3? Search in pp pp Search in pp pp and in pp pp and in pp pp Dyson‘s prediction
17
H. Clement 17Resonances in the Two-Baryon System Experiment Bag Model QDCSM ChQM SU(6) Experiment Bag Model QDCSM ChQM SU(6) Mulders et al. Goldman, Ping et al. Huang, Shen et al. Dyson Mulders et al. Goldman, Ping et al. Huang, Shen et al. Dyson PRD 21 (1980) 2653 PRC 79 (2009) 024001 Mod.Phys.Lett.A25(2010)2155 PRL 13 (1964) 815 PRD 21 (1980) 2653 PRC 79 (2009) 024001 Mod.Phys.Lett.A25(2010)2155 PRL 13 (1964) 815 Comparison to predictions from Quark Models 1 + 0 + 2+2+ 3+3+ I = 0 1 0 1 0 1 0 1 0 1 E … …
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.