Presentation is loading. Please wait.

Presentation is loading. Please wait.

A Data Model for Supporting On-Line Analytical Processing DataBase Lab. 석사 1 학기 홍 은 주.

Similar presentations


Presentation on theme: "A Data Model for Supporting On-Line Analytical Processing DataBase Lab. 석사 1 학기 홍 은 주."— Presentation transcript:

1 A Data Model for Supporting On-Line Analytical Processing DataBase Lab. 석사 1 학기 홍 은 주

2 Abstract Formalize MDD model for OLAP Develop algebraic query language → grouping algebra MDDB consists of finite set of multidimensional cube finite set of relations

3 Contents 연구 동기 Cubes and Grouping relations MDDB and MDDB queries Multidimensional cube algebra Related Research Conclusion

4 연구 동기 Query 1 : 각 상점별로 올해의 모든 날 (day) 에 대한 total sales amount 를 구하라 Query 2 : 각 지역별 (east, west..) 로 작년 매 출순위 상위 5 위의 지역을 찾으라

5 Query 1 (two grouping method) By attribute (store 를 의미함 ) 시간에 따른 position (day 를 의미함 ) → 올해 day ‘ d ’ 까지 store ‘ s ’ 에 있던 sales amount 로 산출 Query 2 (two grouping method) By attribute (product)  작년의 모든 product 에 대한 각각의 sales 를 계산 sales 계산 결과로 각 지역별로 매출 상위 5 위를 뽑 아냄 위와 같은 query 들은 traditional relational query language 로는 query 가 한번에 해결되지 않음 → 本 연구를 시작

6 Cubes and Grouping Relations Definition 1 N-dimensional cube scheme is a set {(D 1,R 1 ), …,(D n,R n )} cube 는 (F, ) 와 짝을 이룸  F = {(D 1,r 1 ), …,(D n,r n )} r i 는 R i 로의 relation  는 {{(D 1,t 1 ), …,(D n,t n )}| ∀ 1≤ i ≤ n : t i ∈ r i } 로부터 V 로의 mapping R : attribute name D : dimension name A 는 dom(A) 에 속함 V : null value 를 포함한 scalar value

7 Analyze – Definition 1 r i 는 Di 의 dimension relation Multidimensional -cube 는  dimension relations 집합과  value mapping 의 집합 ※ value mapping 은 각 dimension 의 각 tuple combination 을 scalar value 로 mapping Cube 의 dimension 이름에 순서가 있다고 가정 :  Cube scheme list :  Cube 는 위와 같은 scheme 에 정의

8 Example 3-dimensional cube SALES = (r s, r p, r d, amount)  scheme 위 에 존재  R s = {loc} (location) R p = {p, m} (item and manufacturer) R d = {y, m, d} (year, month, day)  amount (t s, t p, t d ) sales amount of product t p reported by store t s on day t d

9 Definition 2 S = {(D 1,R 1 ), …, (D n,R n )} : cube scheme G : grouping relation scheme G is said to be applicable to S if for each non-dummy dimension attribute D.A ∈ G, A ∈ R i and D i =D for some i Analyze-Definition 2 Non-dummy dimension attribute D.A 가 D 에 나타남  D : dimension name in the cube scheme  A : relation scheme for dimension D

10 Definition 3 G : grouping scheme g = G 의 grouping relation X : subset of G S = : cube scheme C = (r 1, …,t n ) : S 의 cube Each tuple t in gives the following set of coordinates, denoted by : {(t 1, …,t n )| t i ∈ r i for each 1≤i≤n and there exist t ’ in x=tr(x) such that t ’ [R∩R i ]= t i [R∩R i ] for each 1≤i≤n

11 Example - Definition 3

12 MDDB and MDDB queries MDDB Finite set of multidimensional cube Finite set of grouping relations grouping algebra 를 표현하는 4 MDDB queries MDDB on the scheme (D, C, G) D = {Date, Prod, Store}, C = {Sales} G = {Region} Region is on the scheme {reg, Store.loc}

13 Q.1 Find out the names of the last year ’ s (1994) top 5 selling product (including all manufacturer) Q.2 For each member store, find out the year-to-date total sales amounts for each day this year (the daily cumulative sales amounts over 1995)

14 Q.3 Find the year-to-date total sales amounts, in each region, of each product whose last year ’ s nation-wide total sales amount was ranked among top five Q.4 For all those products that are in the set of products manufactured by m 1 and m 2, find the total sales amounts of this year (1995)

15 Multidimenstional cube algebra cube algebra cube 에서 cube 로 mapping 하는 6 operation 으 로 구성 Purpose  construct data from local databases into suitable multidimensional cubes 종류  1. add dimension, 2. transfer, 3. Union 4. cube aggregation 5. rc-join 6. construct

16 D(C) Input cube C 로부터 C ’ 을 생성 C ’ has new dimension named D  relation for the dimension has only one tuple → empty tuple []  coordinate (t 1, …,t n,[]) in C ’ coordinate (t 1, …,t n ) in C two cube 를 union 하기위해 input cube 가 다 른 cube 와 dimension 을 갖도록 맞추는 것이 목 적 Relation scheme 이 empty set 1. Operation-Add dimension Empty tuple

17 2. Operation - Transfer(1) D 1 의 A 를 D 2 의 새로운 attribute B 로 transfer ※ D : dimension A, B : attribute 첫번째 dimension 의 A 를 두 번째 dimension 으로 project out (by Cartesian product)

18 2. Operation - Transfer(2) EX) C ’ = Example of transfer operations

19 3. Operation - Union union cubes C 1 and C 2 along the dimension D 1 두 cube 의 coordinate 을 union each coordinate get its original value 새로운 coordinate 에 null value 사용됨

20 4. Operation - Aggregate The above cube aggregation gives a cube C ’’ on the scheme Cube Aggregation

21 5. Operation - rc join 6. Operation - Construct join r (relation) into D 1 of C (cube) result : new cube with D 1 r(relation) 에서 cube 생성

22 Example Suppose, Each store reports a cube C i = (r d,r p,amount i ) to the headquarter 위의 cube 들과 위치 relation 등이 headquarters data warehouse 에서 cube 를 구축하는데 쓰임

23 Related Research In DB research, systems similar to OLAP systems have been studied in the domain of statistical and scientific databases(SSDB) Optimization techniques Pre-aggregation new grouping operation CUBE for the SQL group-by clause

24 Conclusion The query language is flexible in expressing many intuitive OLAP queries, including order-related queries. Issued on Nov.1996 by Chang Li, X.Sean Wang George Mason University


Download ppt "A Data Model for Supporting On-Line Analytical Processing DataBase Lab. 석사 1 학기 홍 은 주."

Similar presentations


Ads by Google