Download presentation
Presentation is loading. Please wait.
Published byMonica Harrison Modified over 9 years ago
1
F Matrix: F F F F F Pentagon Fusion rules: 1x1 = 0+1; 1x0 = 0x1 = 1; 0x0 = 0 Fibonacci anyon with topological “charge” 1
2
a a The R Matrix
3
a a R
4
F R R F F R
5
F F R F R R The Hexagon Equation
6
0 1 0 1
7
0 1 0 1
8
0 1 0 1 1
9
0 1 0 1 a 1
10
0 1 0 1 a 1 F 0a
11
0 1 0 1 The Hexagon Equation a 1 F 0a
12
0 1 0 1 The Hexagon Equation a 1 1 a F 0a
13
0 1 0 1 The Hexagon Equation a 1 a,0 + R 1 a,1 1 a F 0a
14
0 1 0 1 The Hexagon Equation a 1 a,0 + R 1 a,1 1 a F 0a
15
0 1 0 1 The Hexagon Equation a 1 F 0a a,0 + R 1 a,1 1 a F a0
16
0 1 0 1 The Hexagon Equation a 1 F 0a a,0 + R 1 a,1 1 a F a0 0 1
17
0 1 0 1 The Hexagon Equation a 1 F 0a a,0 + R 1 a,1 1 a F a0 R0R0 0 1
18
0 1 0 1 The Hexagon Equation a 1 F 0a a,0 + R 1 a,1 1 a F a0 R0R0 0 1
19
0 1 0 1 The Hexagon Equation a 1 F 0a a,0 + R 1 a,1 1 a F a0 R0R0 0 1 1
20
0 1 0 1 The Hexagon Equation a 1 F 0a a,0 + R 1 a,1 1 a F a0 R0R0 0 1 1 0
21
0 1 0 1 The Hexagon Equation a 1 F 0a a,0 + R 1 a,1 1 a F a0 R0R0 0 1 1 0 F 00
22
0 1 0 1 The Hexagon Equation a 1 F 0a a,0 + R 1 a,1 1 a F a0 R0R0 0 1 1 0 F 00
23
0 1 0 1 The Hexagon Equation a 1 F 0a a,0 + R 1 a,1 1 a F a0 R0R0 0 1 1 0 F 00 R0R0
24
0 1 0 1 The Hexagon Equation a 1 F 0a a,0 + R 1 a,1 1 a F a0 R0R0 0 1 1 0 F 00 R0R0 Top path Bottom path
25
The Hexagon Equation Only two solutions: F F R F R R
26
Basic Content of an Anyon Theory F Matrix: R Matrix: F F F F F F F R F R R Pentagon Hexagon “Charge” values: 0, 1 Fusion rules: 1x1 = 0+1; 1x0 = 0x1 = 1; 0x0 = 0
27
Qubit Encoding 0 1 Non-Computational State State of qubit is determined by “charge” of two leftmost particles Qubit States 1 0 Transitions to this state are leakage errors 1 1
28
Elementary Braid Matrices a 1 time
29
a 1 Elementary Braid Matrices a = 0 1
30
a 1 time a 1 Elementary Braid Matrices
31
a 1 time a 1 Elementary Braid Matrices
32
a 1 1 2 1 2 = M i f M T = i a 1 1 1 Elementary Braid Matrices
33
A Quantum Bit: A Continuum of States 1 2 sin0 2 cos i e
34
Single Qubit Operations: Rotations 1 2 sin0 2 cos i e = rotation vector Direction of is the rotation axis Magnitude of is the rotation angle
35
Single Qubit Operations: Rotations = rotation vector U U
36
Single Qubit Operations: Rotations 2 2 2 2 The set of all single qubit rotations lives in a solid sphere of radius Qubits are sensitive: Easy to make errors! U U
37
2 2 2 2 1212 1 -2 2 -2 2 2222
38
N = 1
39
N = 2
40
N = 3
41
N = 4
42
N = 5
43
N = 6
44
N = 7
45
N = 8
46
N = 9
47
N = 10
48
N = 11
49
Brute Force Search
50
Braid Length Brute Force Search Braid Length For brute force search: |ln L. Hormozi, G. Zikos, NEB, S.H. Simon, PRB ‘07 “error”
51
Beyond Brute Force Search Given a sufficiently dense covering of SU(2), braids can be systematically improved by Solovay-Kitaev (see, e.g., Dawson and Nielson, RMP 2002). Braid Length, Using ideas from algebraic number theory can asymptotically achieve: Braid Length Recent Development
52
Single Qubit Operations time U
53
X Two Qubit Gates (CNOT) NEB, L. Hormozi, G. Zikos, & S. Simon, PRL 2005 L. Hormozi, G. Zikos, NEB, and S. H. Simon, PRB 2007
54
Other Two-Qubit Gates L. Hormozi, G. Zikos, NEB, and S.H. Simon, PRB ‘07. Xu and Wan, PRA ‘08. C.Carnahan, D. Zeuch, and NEB, arXiv:1511.00719.
55
X X X X UU Quantum Circuit
56
X X X X UU
57
Braid
58
SU(2) k Nonabelian Particles Quasiparticle excitations of the =12/5 state (if it is a Read- Rezayi state) are described (up to abelian phases) by SU(2) 3 Chern-Simons theory. Universal for quantum computation for k=3 and k > 4. Slingerland and Bais, 2001 Read and Rezyai, 1999 Freedman, Larsen, and Wang, 2001 But before SU(2) k, there was just plain old SU(2)…. In fact, Read and Rezayi proposed an infinite sequence of nonabelian states labeled by an index k with quasiparticle excitations described by SU(2) k Chern-Simons theory.
59
1.Particles have spin s = 0, 1/2, 1, 3/2, … spin = ½ 2. “Triangle Rule” for adding angular momentum: Particles with Ordinary Spin: SU(2) Two particles can have total spin 0 or 1. 01 For example: Numbers label total spin of particles inside ovals
60
Hilbert Space
61
N 0 7/2 3 5/2 2 3/2 1 1/2 S 12345678109 1112 Hilbert Space 1 1/2 1 3/2 Paths are states
62
N 0 1 1 1 1 2 1 3 2 5 9 5 1 4 5 6 14 20 28 14 1 1 7 7/2 3 5/2 2 3/2 1 1/2 S 12345678109 1112 27 48 42 8 55 110 132 44 20 90 42 35 132 Hilbert Space
63
1.Particles have spin s = 0, 1/2, 1, 3/2, … spin = ½ 2. “Triangle Rule” for adding angular momentum: Particles with Ordinary Spin: SU(2) Two particles can have total spin 0 or 1. 01 For example:
64
1.Particles have topological charge s = 0, 1/2, 1, 3/2, …, k/2 topological charge = ½ 2. “Fusion Rule” for adding topological charge: Nonabelian Particles: SU(2) k Two particles can have total topological charge 0 or 1. 01 For example:
65
N 0 1 1 1 1 2 1 3 2 5 9 5 1 4 5 6 14 20 28 14 1 1 7 7/2 3 5/2 2 3/2 1 1/2 S 12345678109 1112 27 48 42 8 110 165 132 44 75 90 42 35 132 Dim(N) ~ 2 N
66
k = 4 Dim(N) ~ 3 N/2
67
k = 3 Dim(N) = Fib(N+1) ~
68
N 0 1 1 1 2 2 2 4 4 4 8 8 8 7/2 3 5/2 2 3/2 1 1/2 S 12345678109 1112 16 32 16 32 k = 2 Dim(N) = 2 N/2
69
The F Matrix a c b c = 0 1/2 1 1 3/2 0 1/2 1 1 3/2 q-integers: ;
70
0 1 0 1 The R Matrix R matrix
71
k=2 k=4 k=3 k=5 N = 1
72
k=2 k=4 k=3 k=5 N = 2
73
k=2 k=4 k=3 k=5 N = 3
74
k=2 k=4 k=3 k=5 N = 4
75
k=2 k=4 k=3 k=5 N = 5
76
k=2 k=4 k=3 k=5 N = 6
77
k=2 k=4 k=3 k=5 N = 7
78
k=3 k=5 k=2 k=4 N = 8
79
k=2 k=4 k=3 k=5 N = 9
80
k=6 k=8 k=7 k=9 N = 1
81
k=6 k=8 k=7 k=9 N = 2
82
k=6 k=8 k=7 k=9 N = 3
83
k=6 k=8 k=7 k=9 N = 4
84
k=6 k=8 k=7 k=9 N = 5
85
k=6 k=8 k=7 k=9 N = 6
86
k=6 k=8 k=7 k=9 N = 7
87
k=6 k=8 k=7 k=9 N = 8
88
k=6 k=8 k=7 k=9 N = 9
89
X CNOT gate for SU(2) 5 L. Hormozi, NEB, & S.H. Simon, PRL 2009
90
“Surface Code” Approach Key Idea: Use a quantum computer to simulate a theory of anyons. More speculative idea: simulate Fibonacci anyons. The simulation “inherits” the fault-tolerance of the anyon theory. Most promising approach is based on “Abelian anyons.” High error thresholds, but can’t compute purely by braiding. Bravyi & Kitaev, 2003 Raussendorf & Harrington, PRL 2007 Fowler, Stephens, and Groszkowski, PRA 2009 Konig, Kuperberg, Reichardt, Ann. Phys. 2010 NEB, D.P. DiVincenzo, PRB 2012
91
2D Array of Qubits
92
Trivalent Lattice
94
“Fibonacci” Levin-Wen Model Levin & Wen, PRB 2005
95
Trivalent Lattice “Fibonacci” Levin-Wen Model Vertex Operator v Q v = 0,1 Levin & Wen, PRB 2005
96
Trivalent Lattice “Fibonacci” Levin-Wen Model Vertex Operator Plaquette Operator v p Q v = 0,1 B p = 0,1 Levin & Wen, PRB 2005
97
Trivalent Lattice “Fibonacci” Levin-Wen Model Vertex Operator Plaquette Operator v p Q v = 0,1 B p = 0,1 Levin & Wen, PRB 2005
98
Trivalent Lattice Vertex Operator Plaquette Operator v p Ground State Q v = 1 on each vertex B p = 1 on each plaquette Q v = 0,1 B p = 0,1 “Fibonacci” Levin-Wen Model Levin & Wen, PRB 2005
99
Trivalent Lattice Vertex Operator Plaquette Operator v p Ground State Q v = 1 on each vertex B p = 1 on each plaquette Excited States are Fibonacci Anyons Q v = 0,1 B p = 0,1 “Fibonacci” Levin-Wen Model Levin & Wen, PRB 2005
100
Vertex Operator: Q v i j k v i j k v All other “Fibonacci” Levin-Wen Model
101
Vertex Operator: Q v i j k v i j k v on each vertex “branching” loop states. All other “Fibonacci” Levin-Wen Model
102
Plaquette Operator: B p Very Complicated 12-qubit Interaction! on each plaquette superposition of loop states f a b d c m j k l n i e p f a b d c m’m’ j’j’ k’k’ l’l’ n’n’ i’i’ e p
103
Plaquette Operator: B p on each plaquette superposition of loop states Very Complicated 12-qubit Interaction! f a b d c m j k l n i e p f a b d c m’m’ j’j’ k’k’ l’l’ n’n’ i’i’ e p
104
Plaquette Operator: B p on each plaquette superposition of loop states Very Complicated 12-qubit Interaction! f a b d c m j k l n i e p f a b d c m’m’ j’j’ k’k’ l’l’ n’n’ i’i’ e p
105
Plaquette Operator: B p on each plaquette superposition of loop states Very Complicated 12-qubit Interaction! f a b d c m j k l n i e p f a b d c m’m’ j’j’ k’k’ l’l’ n’n’ i’i’ e p
106
“Surface Code” Approach v p Use quantum computer to repeatedly measure Q v and B p. How hard is it to measure Q v and B p with a quantum computer? If Q v =1 on each vertex and B p =1 on each plaquette, good. If not, treat as an “error.” Konig, Kuperberg, Reichardt, Ann. Phys. 2010
107
Quantum Circuit for Measuring Q v 1 2 3 v 1 2 3 XXXX NEB, D.P. DiVincenzo, PRB 2012
108
Quantum Circuit for Measuring Q v 1 2 3 v 1 2 3 XXXX Syndrome qubit NEB, D.P. DiVincenzo, PRB 2012
109
Quantum Circuit for Measuring Q v That was easy! What about B p ? 1 2 3 v 1 2 3 XXXX Syndrome qubit NEB, D.P. DiVincenzo, PRB 2012
110
6-sided Plaquette: B p is a 12-qubit Operator
111
Physical qubits are fixed in space 6-sided Plaquette: B p is a 12-qubit Operator
112
Physical qubits are fixed in space Trivalent lattice is abstract and can be “redrawn” 6-sided Plaquette: B p is a 12-qubit Operator
113
Physical qubits are fixed in space Trivalent lattice is abstract and can be “redrawn”
114
Physical qubits are fixed in space Trivalent lattice is abstract and can be “redrawn” 6-sided Plaquette: B p is a 12-qubit Operator
115
Physical qubits are fixed in space Trivalent lattice is abstract and can be “redrawn” 6-sided Plaquette: B p is a 12-qubit Operator 6-sided plaquette becomes 5-sided plaquette!
116
The F–Move Locally redraw the lattice five qubits at a time.
117
The F–Move ad bc e e’e’ ad bc Apply a unitary operation on these five qubits to stay in the Levin-Wen ground state.
118
a c e b d = F X X X X X ad bc e e’e’ ad bc F Quantum Circuit NEB, D.P. DiVincenzo, PRB 2012
119
a c e b d 1 2 3 4 5 ad bc e e’e’ ad bc F Quantum Circuit 1 5 4 3 2 1 5 4 3 2 NEB, D.P. DiVincenzo, PRB 2012
120
Plaquette Reduction
145
2-qubit “Tadpole”
146
Measuring B p for a Tadpole is Easy! S Quantum Circuit a b a b a b X = a b S XX
147
Plaquette Restoration
159
6 1 2 4 3 12 9 10 11 7 8 5 p Quantum Circuit for Measuring B p NEB, D.P. DiVincenzo, PRB 2012
160
Gate Count 371 CNOT Gates 392 Single Qubit Rotations 8 5-qubit Toffoli Gates 2 4-qubit Toffoli Gates 10 3-qubit Toffoli Gates 43 CNOT Gates 24 Single Qubit Gates 6 1 2 4 3 12 9 10 11 7 8 5 p NEB, D.P. DiVincenzo, PRB 2012
161
B p = ? 5 4 3 2 1 6 12 7 8 9 10 11 Plaquette Swapping
162
Freshly initialized “tadpole” in LW ground state B p = ? 5 4 3 2 1 6 12 7 8 9 10 11 13 14 15 Plaquette Swapping
163
B p =1 B p = ? Plaquette Swapping
164
B p =1 B p = ? Plaquette Swapping
165
B p =1 B p = ? Plaquette Swapping
166
B p =1 B p = ? Plaquette Swapping
167
B p =1 B p = ? Plaquette Swapping
168
B p =1 B p = ? Plaquette Swapping
169
B p =1 B p = ? Plaquette Swapping
170
B p =1 B p = ? Plaquette Swapping
171
B p =1 B p = ? Plaquette Swapping
172
B p =1 B p = ? Plaquette Swapping
173
B p =1 B p = ? Plaquette Swapping
174
B p =1 B p = ? Plaquette Swapping
175
B p =1 B p = ? Plaquette Swapping
176
B p =1 B p = ? Plaquette Swapping
177
B p =1 B p = ? Plaquette Swapping
178
B p =1 B p = ? Plaquette Swapping
179
B p =1 B p = ? Plaquette Swapping
180
B p =1 Measure B p Plaquette Swapping
181
Plaquette Swapping Circuit = SWAP W. Feng, NEB, D.P. DiVincenzo, Unpublished
182
B p =1 Measure B p After Swapping
183
B p =1 No Error After Swapping
184
B p =1 Simply Remove Swapped Plaquette After Swapping
185
B p =1 B p =0 Error After Swapping
186
B p =1 B p =0 Error Move “Packaged” Error Using F-Moves After Swapping
187
B p =1 Move “Packaged” Error Using F-Moves After Swapping
188
B p =1 Move “Packaged” Error Using F-Moves After Swapping
189
B p =1 Move “Packaged” Error Using F-Moves After Swapping
190
B p =1 Move “Packaged” Error Using F-Moves After Swapping
191
B p =1 Move “Packaged” Error Using F-Moves After Swapping
192
B p =1 Move “Packaged” Error Using F-Moves After Swapping
193
B p =1 Move “Packaged” Error Using F-Moves After Swapping
194
B p =1 Move “Packaged” Error Using F-Moves After Swapping
195
B p =1 Move “Packaged” Error Using F-Moves After Swapping
196
1234 5 6 7
197
1234 5 6 7 5 6 7 1234
198
5 5 6 7 1234 6 7 1234 1234 5 6 7
199
6 5 6 7 1234 5 6 7 1234 5 7 1234 1234 5 6 7
200
5 6 1234 5 6 7 1234 7 5 6 7 1234 5 6 7 1234 1234 5 6 7
201
6 1234 7 1234 5 7 1234 5 6 7 5 6 7 1234 5 6 7 1234 1234 5 6 7 6 5
202
6 6 1234 6 5 7 1234 5 7 1234 5 7 5 6 7 1234 5 6 7 1234 1234 5 6 7
203
6 6 1234 6 5 7 SWAP 1234 5 7 1234 5 7 5 6 7 1234 5 6 7 1234 1234 5 6 7
204
3 4 5 6 1 2 7 b e a d c d e c b a c e b a d a e d c b c e b a d = NEB, D.P. DiVincenzo, PRB 2012 Pentagon Equation as a Quantum Circuit
205
3 4 5 6 1 2 7 b e a d c d e c b a c e b a d a e d c b c e b a d = SWAP NEB, D.P. DiVincenzo, PRB 2012 Pentagon Equation as a Quantum Circuit
206
Simplified Pentagon Circuit = SWAP F F F F F NEB, D.P. DiVincenzo, PRB 2012
207
Creating Excited States: Fibonacci Anyons Konig, Kuperberg, Reichardt, Ann. Phys. 2010
208
Vertex Errors = String Ends
209
String Ends = Fibonacci Anyons Fibonacci anyons
210
Konig, Kuperberg, Reichardt, Ann. Phys. 2010
211
Konig, Kuperberg, Reichardt, Ann. Phys. 2010
213
1 F-moves
215
4 F-moves
217
8 F-moves
220
32 F-moves
221
48 F-moves
223
51 F-moves
225
56 F-moves
229
Braid Dehn Twist Konig, Kuperberg, Reichardt, Ann. Phys. 2010
245
Non-Abelian Anyons and Topological Quantum Computation, C. Nayak et al., Rev. Mod. Phys. 80, 1083 (2008). (arXiv:0707.1889v2) Lectures on Topological Quantum Computation, J. Preskill, Available online at: www.theory.caltech.edu/~preskill/ph219/topological.pdf Some excellent reviews: Support: US DOE NEB, L. Hormozi, G. Zikos, S.H. Simon, Phys. Rev. Lett. 95 140503 (2005). S.H. Simon, NEB, M.Freedman, N, Petrovic, L. Hormozi, Phys. Rev. Lett. 96, 070503 (2006). L. Hormozi, G. Zikos, NEB, and S.H. Simon, Phys. Rev. B 75, 165310 (2007). L. Hormozi, NEB, and S.H. Simon, Phys. Rev. Lett. 103, 160501 (2009). M. Baraban, NEB, and S.H. Simon, Phys. Rev. A 81, 062317 (2010). NEB and D.P. DiVincenzo, Phys. Rev. B 86, 165113 (2012).
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.