Download presentation
Presentation is loading. Please wait.
Published byEarl Powers Modified over 9 years ago
1
Fig. 5-COa, p. 128
2
Fig. 5-COb, p. 129
3
Age (Ma) cmEvents 64.9 50 Post-extinction layer: Sediments containing microfossils from after the dinosaurs Tertiary 65.0 Fireball layer: Dust and ash fallout from the asteroid impact 60 Ejecta layer: Material blasted from the crater and deposited here within days to months 70 Cretaceous
4
Fig. 5-1, p. 130
5
Fig. 5-2, p. 130
6
Fig. 5-3, p. 130
7
Fig. 5-4, p. 131
8
Depth 21.25 3 1.9 4 2.5 Scour moat 5 3.1 6 4 km miles West East
9
Table 5-1, p. 132
10
Fig. 5-5, p. 132
11
1,000 100 Erosion 20 10 Transportation cm /sec Stream velocity (cm/sec) 1 1 cm /sec Deposition ClaySiltSandGravel.1.004.06 A 2.0100 Particle size (diameter in mm)
12
Table 5-2, p. 133
13
Fig. 5-6, p. 133
14
Erosion Transport Uplift Deposition Sedimentary beds Lithospheric plate
15
Fig. 5-7a, p. 134
16
Fig. 5-7b, p. 134
17
Fig. 5-7c, p. 134
18
Fig. 5-8, p. 135
19
Fig. 5-9, p. 136
20
Fig. 5-10, p. 137
21
Terrigenous deposits:Biogenous deposits: Hydrogenous deposits also present (manganese nodules) Continental margin sediments Calcareous oozes Glacial-marine sediments Siliceous radiolarian oozes Pelagic claysSiliceous diatom oozes
22
Table 5-3, p. 137
23
Fig. 5-11, p. 138
24
Fig. 5-12, p. 139
25
Storm winds Sea level Wave base Substrate liquefied by wave activity Turbidity current Key Turbidity currents Submarine canyon Deep- sea fans Distance from shelf edge 50150 km miles 0 50 100 Continental slope Continental rise Abyssal plain Continental shelf Sediment slump masses Graded beds of turbidites Underlying basaltic crust 100
26
Fig. 5-12, p. 139 Stepped Art Key Turbidity currents Submarine canyon Deep- sea fans Distance from shelf edge 50150 km miles 0 50 100 Continental slope Continental rise Abyssal plain Continental shelf Sediment slump masses Graded beds of turbidites Underlying basaltic crust 100 Storm winds Sea level Wave base Substrate liquefied by wave activity Turbidity current
27
Fig. 5-13a, p. 140
28
Fig. 5-13b, p. 140
29
Fig. 5-13c, p. 140
30
Fig. 5-14, p. 141
31
Fig. 5-15, p. 141
32
Antarctic CaCO 3 accumulates above CCD Arctic CaCO 3 dissolves below CCD CCD “Marine snow” 4,500 meters Below CCD, water holds more CO 2, which results in more carbonic acid, which dissolves CaCO 3 faster.
33
Fig. 5-16a, p. 142
34
Fig. 5-16b, p. 142
35
Fig. 5-17a, p. 143
36
Fig. 5-17b, p. 143
37
Fig. 5-18a, p. 143
38
Fig. 5-18b, p. 143
39
Fig. 5-19, p. 144
40
Fig. 5-20, p. 145
41
Fig. 5-21a, p. 146
42
Fig. 5-21b-d, p. 146
43
Fig. 5-22a, p. 146
44
Fig. 5-22b-e, p. 146
45
Fig. 5-23a, p. 147
46
Fig. 5-23b, p. 147
47
Fig. 5-24, p. 147
48
Fig. 5-25, p. 148
49
Burst of air Hydrophone Sound reflects from the junctions between sub- bottom layers Bottom
50
Fig. 5-26, p. 149
51
Bonin Trough Jurassic and older? Early Cretaceous Eocene- Paleocene Mariana Trench Middle Cretaceous More than 136 Ma up to the Mariana Trench 136 Ma110 Ma88 Ma65 Ma38 Ma Present location of the East Pacific Rise 26 Ma 12 Ma
52
Fig. 5-27, p. 150
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.