Presentation is loading. Please wait.

Presentation is loading. Please wait.

Neutrino Particle Astrophysics John CARR Centre de Physique des Particules de Marseille / IN2P3 / CNRS.

Similar presentations


Presentation on theme: "Neutrino Particle Astrophysics John CARR Centre de Physique des Particules de Marseille / IN2P3 / CNRS."— Presentation transcript:

1 Neutrino Particle Astrophysics John CARR Centre de Physique des Particules de Marseille / IN2P3 / CNRS

2 Origin and Structure of the Universe ? present time 14 billion years ago What is the present structure ? What happened in first few minutes ? How did structure form ? evolution Origin of the Universe Present Structure of the Universe

3 Present Structure of Universe Radiation 0.02% Luminous stars 0.4 % Dark baryons 4 % Cold Dark Matter 23 % Dark Energy 73 % Total average density in universe = 10 -29 g/cm 3 (= 5 10 3 eV/cm 3 = 5 H-atoms/m 3 ) Average fractions over whole universe

4 Galaxies > 10 6 galaxies

5 Stars ~ 10 8 stars/galaxy Implosion of core of red giant Expansion of matter Explosion of star Supernova Supernova Remnant Evolution of small stars like sun Evolution of big stars Red giant explodes as Supernova Ends as White Dwarfs

6 SuperNovae Remnants Vela Cas A Tycho Crab Cygnus Loop Soleil Tycho Crab Cas A Vela Kepler Cygnus SN1006 SN1054 (Crab) SN1680 (CasA)

7 Gamma-Ray Bursts Gamma Ray Burst were first detected by the Vela satellites that were developed in the sixties to monitor nuclear test ban treaties. 1st GRB

8 Burst duration Gamma Ray Bursts Redshifts measured for about 20  extragalactic distances 1-2 per day observed by BATSE Some evidence for GRB on sites of previous supernova Isotropic sky distribution Two types ?

9 Sgr A* VLA 2cm VLBI 6 mm Radio Infrared Black Hole mass Black Holes Black Hole at Centre of Milky Way Galaxy

10 QUASAR and MICROQUASARS QUASAR MICROQUASAR 10 8 - 10 9    10 2 - 10 5   distant galaxies local galaxy >100 Mpc <10kpc

11 Dark Matter Gravity: G M(r) / r 2 = v 2 / r enclosed mass: M(r) = v 2 r / G velocity, v radius, r Luminous stars only small fraction of mass of galaxy

12 Evidence for Dark Matter in Galaxy Clusters Hubble Space Telescope multiple images of blue galaxy Reconstructed matter distribution

13 Cosmic Microwave Background Discovery Penzas and Wilson CMB = 0.005 % of total energy density = 0.25 eV/ cm 3 3K photon background Relic of big bang WMAP new data 2003 … Boomerang data

14 Primary cosmic ray produce showers in atmosphere Primary: p 80 %,  9 %, n 8 %, … Secondary at ground level: 68 %,  30 %,... Cosmic Rays at ground level :~ 1 cm²/min ( >1 GeV) Energy density in galaxy = 0.5 eV / cm 3  energy in local starlight

15 Origin of the Universe : Big Bang time after big bang temperature of universe 3000 K 10 10 K 3 10 5 y 100 s Neutral hydrogen forms universe transparent to light fossil photon radiation frozen T (K) ~ 10 10 /t ½ (s) Equilibrium n/p ends Nucleosynthesis begins nuclei atoms

16 formed in: Big Bang Nucleo-synthesis Hot Stars Supernova Explosions Cosmic Ray Interactions Origin of Elements

17 ? Instruments to Explore the Universe Radio Infrared X-ray Visible light Gamma Ray Neutrino ?

18 Thermal Radiation from Stars 10 3 10 5 10 7 10 9 10 11 10 13 10 15 frequency(MHz) Flux watts/m 2 10 6 10 2 10 -2 10 -6 10 -12 i.r.u.v. X ray gamma rays-> T=10000K T=6000K Normal Stars surface temperature ~3000 to 30000K thermal radiation: radio  ultra -violet non-thermal radiation: X-rays, gamma rays ( higher in energy more extreme is the source) radio

19 Hot plasma (surface of stars) Bremsstrahlung / Synchrotron Radiation Inverse Compton Scattering e e   magnetic field Annihilation of matter/antimatter   e-e- e+e+  e e  High energy showers p interstellar matter ++ 00    Production of High Energy Particles

20 Particle Acceleration R  10 15 km, B  10  10 T  E  1000 TeV R  10 km, B  10 T  E  10 TeV Large Hadron Collider Tycho SuperNova Remnant E  BR ( NB. E  Z  Pb/Fe higher energy)

21 Cosmic Accelerators: ( Hillas Plot) E  Z B L  Z: Charge of particle B: Magnetic field L: Size of object  : Lorentz factor of shock wave L B GRB (artist) Crab Pulsar Vela SNR 3C47 M87, AGN Centurus A M87

22 Production of High Energy Neutrinos p/A + p/              e e Charged particles accelerated by Fermi process in shock wave Neutral particles produced in interactions and decays Matter moving at close to speed of light

23 Photons absorbed on dust and radiation Protons deviated by magnetic fields Neutrinos direct Neutrino Astronomy

24 relics from Big Bang natural radioactive decay in Earth nuclear reactors explosions of supernova remnants of supernova from nuclear reactions in Sun interactions of cosmic rays in atmosphere Active Galactic Nuclei Neutrino energy (eV) Neutrinos arriving at Earth

25 Most distance source of neutrinos so far observed L = 50 kpc (150 light years) p  e   n  e e +  e   e + e,,     Supernova 1987a time (sec) events Night before, 23 feb 4 hours after explosion neutrinos observed

26 Predictions for Galactic Sources Plerions Detection rates events/year in ANTARES SuperNova Remnant Pulsar

27 Predictions for Microquasars in ANTARES Detection rates events/year

28 Matter/Energy in the Universe    b   +  CDM   total      matter dark energy Matter: Cold Dark Matter :  CDM  0.23 WIMPS/neutralinos, axions, … Neutrinos:    if  eV Baryonic matter :  b   stars, gas, brown dwarfs, white dwarfs baryons neutrinos cold dark matter CDM Dark Energy

29 Cold Dark Matter Candidates Neutrinos Expected to exist as Big Bang fossil  300 / cm 3  = 0.002 if m ~ 0.1eV ( as much mass as visible stars ) Could not explain all DM because escape during galaxy formation Axions Invoked to clean up ‘Strong CP Violation’ problem in SM Can be Dark Matter if 10  5 < m a < 10  2 eV Tough to detect WIMPS (Weakly Interacting Massive Particles ) Neutralino : lightest super-symmetric particle Many searches

30 Indirect detection of WIMPS Earth       Sun Detector Searches for annihilation in Halo, Earth, Sun, Galactic Centre, other galaxies, … various secondary particle signatures: e +, p, D, , Example: neutrino detection from annihilation in sun  W, f X   WW, ff WIMP looses energy by elastic collisions when v < v escape captured

31 Neutrino Telescope Projects NESTOR : Pylos, Greece ANTARES La-Seyne-sur-Mer, France ( NEMO Catania, Italy ) BAIKAL: Lake Baikal, Siberia DUMAND, Hawaii (cancelled 1995) AMANDA, South Pole, Antarctica


Download ppt "Neutrino Particle Astrophysics John CARR Centre de Physique des Particules de Marseille / IN2P3 / CNRS."

Similar presentations


Ads by Google