Download presentation
Presentation is loading. Please wait.
Published byMorris Sanders Modified over 9 years ago
1
Multi-Valued Neuron with Sigmoid Activation Function Shin-Fu Wu 2013/6/21
2
MVN-sig Review
3
Outlines Stopping Criteria Parameter C Learning Rule for Parameter C Simulation Results Binary Classification MVN-P approach Simulation Results Complex-output Model Model Architecture Simulation Results Future Work
4
Stopping Criteria
5
Training acc. - EpochSquared error - Epoch
6
Training acc. - EpochSquared error - Epoch
7
Training acc. - EpochSquared error - Epoch
8
Parameter C
9
Simulation Results Wine Dataset MVN EpochSec.Acc. 38.60.213793.39 43.60.227595.52 31.40.183592.80 35.20.206493.28 35.80.202793.50 36.920.206893.698 MVN-sig (C=5) EpochSec.Acc. 92.61.739992.80 80.41.082294.34 650.435195.04 550.597494.34 94.41.593694.93 77.481.089694.29 MVN-sig (learned C) EpochSec.Acc. 83.80.384393.75 540.278892.21 60.40.281693.28 101.81.373591.04 1231.031691.51 84.60.669992.358
10
Simulation Results Glass Identification Dataset MVN EpochSec.Acc. 101.40.588689.69 96.60.556189.69 101.80.566689.69 118.80.625189.21 109.20.595489.21 105.560.586489.50 MVN-sig (C=5) EpochSec.Acc. 226.81.731792.59 254.21.541892.15 148.62.178292.55 2792.164792.03 305.85.481590.17 242.882.619691.90 MVN-sig (learned C) EpochSec.Acc. 873.45.785591.12 512.44.541992.11 3853.158093.93 20659138.0593.50 1385138.4290.64 7256.237.9992.26
11
Binary Classification MVN-P approach k=2, l=2, m=k*l=4 About 10% worse than MVN-P … WHY?
12
Simulation Results MVN-PMVN-sig-P Breast Cancer96.14%89% ~ 95.94% Parkinson's89.19%68.51% ~ 82.35% heart76.78%59.52% ~ 73.04%
13
Complex-output Model
14
15
16
Simulation Results Wine Dataset MVN EpochSec.Acc. 38.60.213793.39 43.60.227595.52 31.40.183592.80 35.20.206493.28 35.80.202793.50 36.920.206893.698 MVN-sig (C=5) EpochSec.Acc. 92.61.739992.80 80.41.082294.34 650.435195.04 550.597494.34 94.41.593694.93 77.481.089694.29 Complex MVN-sig (C=5) EpochSec.Acc. 56.21.412095.52 68.41.201095.52 151.41.316894.57 67.21.324095.52 520.806394.34 79.041.212095.094
17
Simulation Results Iris Dataset MVN (96% trained) EpochSec.Acc. 9.40.048194.00 10.40.053293.33 9.60.053391.33 11.60.058193.33 80.045194.00 9.80.051693.20 MVN-sig (C=5) EpochSec.Acc. 6.60.027396.00 17.40.073893.33 9.80.032396.00 14.20.080297.33 10.40.047692.67 11.680.052295.066 Complex MVN-sig (C=5) EpochSec.Acc. 29.80.569796.00 150.240696.00 33.80.620495.33 16.20.132196.67 20.40.177095.33 23.040.348095.87
18
Future Works Synthetic Data Analysis Why the binary classification failed? Why this model is feasible? Regression Problem How to solve regression problems? Multilayer Structure Construct MLMVN using complex-output MVN-sig How to choose the activation functions in the hidden layer?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.