Download presentation
Presentation is loading. Please wait.
Published byDarlene Park Modified over 9 years ago
1
Amand Faessler, Tuebingen1 Chiral Quark Dynamics of Baryons Gutsche, Holstein, Lyubovitskij, + PhD students (Nicmorus, Kuckei, Cheedket, Pumsa-ard, Khosonthongkee, Giacosa) Amand Faessler, Tuebingen
2
2 Chiral Quark Dynamics of Baryons Quantum Chromodynamics: with:
3
Amand Faessler, Tuebingen3 Chiral Quark Dynamics of Baryons 1. P, C, T (exact) 2.Global (and local ) Gauge Invariance: (exact) for each flavor f Effective Lagrangian for low Energies with the same Symmetries as QCD:
4
Amand Faessler, Tuebingen4 Chiral Quark Dynamics of Baryons From this invariance follows: Conservation of the No quarks of flavor f; -baryon number -electric charge -Third compon. of Isospin -Strangeness -Charm … 3. Approximate Flavor Sym. all the same u, d / SU(2) Isospin; u,d,s / SU(3)
5
Amand Faessler, Tuebingen5 Chiral Quark Dynamics of Baryons 4. Approximate Chiral Symmetry: Current quark mass at QCD scale ~ 1 GeV Current mass term: Current quark mass term violates Chiral Symmetry
6
Amand Faessler, Tuebingen6 Chiral Quark Dynamics of Baryons Low energy effective Lagrangian with correct Symmetries Gluons and Quarks eliminated: -> Chiral Perturbation theory Gluons eliminated but with quarks: -> Perturbative Chiral Quark Model (Manohar and Georgi)
7
Amand Faessler, Tuebingen7 Chiral Quark Dynamics of Baryons Perturbative Chiral Quark Model A. Manohar and H. Georgi: Nucl. Phys. B234 (1984) 189
8
Amand Faessler, Tuebingen8 Chiral Quark Dynamics of Baryons Danger of Double Counting in Chiral Quark Model : Pseudoscalar Mesons as Goldstone Bosons and as Quark-Antiquark States Investigated by A. Manohar and H. Georgi: Nucl. Phys. B234 (1984) 189 Goldstone Bosons are the low lying pseudoscalar Mesons. The quark-antiquark states lie very high.
9
Amand Faessler, Tuebingen9 Chiral Quark Dynamics of Baryons Effective Lagrangian up to fourth order: The quark functions q, the quark momenta, the constituent quark masses, and the chiral fields are of order 1: O(1). Pseudoscalar meson masses, Meson momenta, electroweak potentials are of first order small. Current quark masses, electric and magnetic field tensors F are of second order small.
10
Amand Faessler, Tuebingen10 Chiral Quark Dynamics of Baryons With: Do not read this formula! On quark level suggested in leading order by Manohar and Georgi Nucl. Phys. B 234 (1984)189. On hadron level formulated by Gasser, Leutwyler, Holstein, Meissner, Weise, Hemmert, Scherer and others up to fourth order. Leading order Up to fourth order in small quantities.
11
Amand Faessler, Tuebingen11 Chiral Quark Dynamics of Baryons 10 Parameters : m u ;m s ;g ;c 2 ; c 4 ;c 5 ;e 7 ;e 8 ;e 10 ;d 10 Compositeness condition: g( meson-quark) coupling; constituent quarks have mass in chiral limit
12
Amand Faessler, Tuebingen12 Chiral Quark Dynamics of Baryons Parameters and counterterms: c 6,e 7,e 8 fitted to the magnetic moments: Parameters: c 2, c 4,e 10,d 10 fitted to electric and magnetic radii of protons and neutrons: With:
13
13 Chiral Quark Dynamics of Baryons Formfactor of a single constituent bare quark q = u, d in the Nucleon at high energies can not calculated by chiral perturbation theory. Nucleon expectation value of the bare constituent quark current.
14
Amand Faessler, Tuebingen14 Can not be calculated by chiral perturbation theory. Bare Constituent Quark Formfactors fixed by High energy Part of the Nucleon Formfactors or by covariant Quark Model Wave Function.
15
Amand Faessler, Tuebingen15 Chiral Quark Dynamics of Baryons Alternative approach: We use a simple Gaussian Function for the bare quarks (I. V. Anikin et. al. Z. Phys. C65(1995) 681): k 1E and k 2E = Euclidian relative Jacobi momenta B = 800 MeV k 1E k 2E
16
Amand Faessler, Tuebingen16 Chiral Quark Dynamics of Baryons We dress now the bare quark current by the pseudoscalar meson cloud of pions, kaons and etas.
17
Amand Faessler, Tuebingen17 Chiral Quark Dynamics of Baryons More diagrams:
18
Amand Faessler, Tuebingen18 Chiral Quark Dynamics of Baryons Diagrams with vector mesons:
19
Amand Faessler, Tuebingen19 Chiral Quark Dynamics of Baryons Connection with Vector Dominance Model
20
Amand Faessler, Tuebingen20 Chiral Quark Dynamics of Baryons - - 18 such type of diagrams included: Correction smaller than about 15 % Pseudoscalar meson in flight not yet included. Small. Counter terms Single quark Nucleon
21
Amand Faessler, Tuebingen21 Chiral Quark Dynamics of Baryons Dressed Baryon Current
22
Amand Faessler, Tuebingen22 Chiral Quark Dynamics of Baryons Effect of the pseudoscalar meson cloud on magnetic moments, On electric and magnetic formfactors of protons and neutrons, On the N-Delta M1 transition and the ratio E2/M1 and C2/M1 for N -> .
23
Amand Faessler, Tuebingen23 Magnetic Diagonal and Transition Moments of the Baryon Octet in units: [ nm] = Fit Edelman; Blanpied et al.
24
Amand Faessler, Tuebingen24 Nucleon-Delta Transition GeV Data: S. Eidelman et al.; S. Stave et al.; G. Blanpied et al.
25
Amand Faessler, Tuebingen25 Ratios of Coulomb and Electric Quadrupole over Magnetic Dipole for: Delta -> Nucleon + Data: S. Stave et al.; N. F. Sparveris et al.; T. Popischil et al. ; D. Elsner et al. Eur. Phys. J. 27(2006) 91. Valence quarks Total: valence+cloud Valence quarks Total: valence+cloud
26
Amand Faessler, Tuebingen26 Connection beween Dirac, Pauli F 1/2 and Sachs G E/M Formfactors With: DIRAC Pauli
27
Amand Faessler, Tuebingen27 Electron-Proton Scattering and Rosenbluth Separation of Sachs Formfactors: G p E and G p M
28
Amand Faessler, Tuebingen28
29
Amand Faessler, Tuebingen29 Chiral Quark Dynamics of Baryons Ratio :
30
Amand Faessler, Tuebingen30 Qualitative Explanation for the Electric Formfactor of the Proton: + proton = = neutron pion+ Fourier –Transf. with spherical Bessel-fct.: Radius r ~85 % ~15 % Bessel
31
Amand Faessler, Tuebingen31 Electric Formfactor of the Neutron Cloud Valence quarks total pion- neutron proton
32
Amand Faessler, Tuebingen32 Chiral Quark Dynamics of Baryons Magnetic Proton Formfactor.
33
Amand Faessler, Tuebingen33 Chiral Quark Dynamics of Baryons Magnetic Formfactor of the Neutron over the Dipole Formfactor
34
Amand Faessler, Tuebingen34
35
Amand Faessler, Tuebingen35 Electric over Magnetic Proton Formfactor Rosenbluth Separation Polarised e- beam plus polarized recoil protons Data: SLAC: Walker et al.Phys.Rev.D (1994); Jefferson Lab Hall A :Punjabi et al. Phys. Rev. C (2005) and Gayou et al.P.R.L.
36
Amand Faessler, Tuebingen36 Summary: -Chiral Dynamics on quark level up to fourth order -Parameters and Counter Terms fixed to Magnetic Moments (p, n, ), Radii and High Energy Behavior of Formfactors for Protons and Neutrons. -Calculated Meson cloud Effects on Magnetic Moments of Baryon Octet -Calculated meson cloud effects on N- transition -Effects of Pseudoscalar Meson Cloud on Formfactors. Chiral Quark Dynamics of Baryons The END
37
Amand Faessler, Tuebingen37 PUBLICATIONS: 1. A. Faessler, Th. Gutsche, V. E. Lyubovitskij, K. Pumsa-ard: Prog. Part. Nucl. Phys. 55 ( 2005) 12. 2. A. Faessler, Th. Gutsche, V. E. Lyubovitskij, K. Pumsa-ard: Phys. Rev. D73 (2006)114021 3. A. Faessler, Th. Gutsche, B. R. Holstein, E. Lyubovitskij: Phys. Rev. D74 (2006) 074010
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.