Download presentation
Presentation is loading. Please wait.
Published byDana Colleen Bond Modified over 8 years ago
1
Quark spectrum near chiral and color-superconducting phase transitions Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,056003 (2004), M.K., T.Koide, T.Kunihiro and Y.Nemoto, hep-ph/0502035, M.K., T.Kunihiro and Y.Nemoto, in preparation. International Workshop on "Chiral Restoration in Nuclear Medium"
2
1, 1, Introduction
3
150~170MeV Phase Diagram of QCD Color Superconductivity(CSC) Hadrons T Chiral Symm. Broken 0 ~100MeV Hadronic excitations in QGP phase soft mode of chiral transition - Hatsuda, Kunihiro. qq bound state - Shuryak, Zahed; Brown, Lee, Rho, Shuryak. Lattice simulations – Asakawa, Hatsuda; etc. Pre-critical region of CSC large pair fluctuations precursory phenomena of CSC M.K., et al., 2002,2004
4
Formation of Pseudogap in CSC M. K. et al. PRD70, 956003(2004) Let ’ s see the property of quarks near T c of (1) the CSC. (2) the SB. the “pseudogap region” above the CSC phase.
5
Nambu-Jona-Lasinio model (2-flavor,chiral limit) : : SU(2) F Pauli matrices : SU(3) C Gell-Mann matrices C :charge conjugation operator so as to reproduce Parameters: Klevansky(1992), T.M.Schwarz et al.(1999) M.K. et al., (2002) 2SC is realized at low and near T c. We neglect the gluon degree of freedom. Notice: NJL model
6
2, 2, Quarks above CSC phase transition T
7
Response Func. of Pair Field Response Fucntion D(k, ) in linear response theory & RPA Spectral Function As T T c, the peak grows. The soft mode of the CSC trans. ε→ 0 (T → T C ) for k=0 The peak grows from e ~ 0.2 electric SC : e ~ 0.005 = 400 MeV M.K., et al., PRD 65, 091504 (2002)
8
T-matrix Approximation Quark Green function : :T-matrix Self-energy: Decomposition of G: positive energy part
9
Dispersion Relation of Quarks = (p) rapid increase around =0 [MeV] k [MeV] 40 80 0 -40 -80 400 320 480 0 k kFkF 0 k kFkF Normal Super = 400 MeV =0.01 M. K. et al. 2002, 2004 w.f. renormalization still Fermi-liquid-like However,
10
stronger diquark coupling G C Diquark Coupling Dependence GCGC ×1.3×1.5 = 400 MeV =0.01
11
Resonant Scattering of Quarks G C =4.67GeV -2 Janko, Maly, Levin, PRB56,R11407 (1995)
12
Resonant Scattering of Quarks G C =4.67GeV -2 Mixing between quarks and holes k n f ( )
13
3, 3, Quarks above chiral phase transition T
14
Quarks at very high T 1-loop (g<<1) Hard Thermal Loop ( p, , m q <<T ) dispersion relations plasmino
15
Quarks at very high T 1-loop(g<<1) Hard Thermal Loop approximation( p, , m q <<T ) dispersion relations
16
Soft Mode of Chiral Transition Response Fucntion D(k, ) fluctuations of the chiral order parameter Spectral Function ε→ 0 (T → T C ) for k=0 T Hatsuda, Kunihiro ( ’ 85)
17
Quark Self-enrgy Quark Green function : :free quark progagator Self-energy: in the chiral limit
18
Spectral Function of Quarks [MeV] k [MeV] = 0 MeV T = 200MeV positive energy part - ( ,k) k [MeV] sharp peak with negative dispersion [MeV] quasiparticle peak ~ k
19
Spectral Function of Quarks [MeV] k [MeV] = 0 MeV T = 200MeV positive energy part - ( ,k) k [MeV] [MeV] - ( ,k) + ( ,k) k [MeV]
20
Resonant Scatterings of Quarks These resonant scatterings affect the peaks of the spectral functions in a non-trivial way.
21
k [MeV] [MeV] - ( ,k) + ( ,k) k [MeV] T dependence = 0.05
22
k [MeV] [MeV] - ( ,k) + ( ,k) k [MeV] T dependence = 0.1
23
k [MeV] [MeV] - ( ,k) + ( ,k) k [MeV] T dependence = 0.15
24
k [MeV] [MeV] - ( ,k) + ( ,k) k [MeV] T dependence = 0.2
25
k [MeV] [MeV] - ( ,k) + ( ,k) k [MeV] T dependence = 0.25
26
k [MeV] [MeV] - ( ,k) + ( ,k) k [MeV] T dependence = 0.3
27
k [MeV] [MeV] - ( ,k) + ( ,k) k [MeV] T dependence = 0.35
28
k [MeV] [MeV] - ( ,k) + ( ,k) k [MeV] T dependence = 0.4
29
k [MeV] [MeV] - ( ,k) + ( ,k) k [MeV] T dependence = 0.5
30
SummarySummary The soft mode associated with the chiral and color-superconducting phase transitions strongly affects the property of quarks near T c. T 0 They can be understood through the resonant scattering of quarks. Future: finite quark mass, finite density, phenomenological applications
31
0 ( ,k) = 400 MeV =0.01 Spectral Function of Quarks k 0 [MeV] quasi-particle peak, = k)~ k Depression at Fermi surface Im ,k=k F ) [MeV] The peak in Im around =0 owing to the decaying process: k [MeV] kFkF kFkF
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.