Presentation is loading. Please wait.

Presentation is loading. Please wait.

Quark spectrum near chiral and color-superconducting phase transitions Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,056003.

Similar presentations


Presentation on theme: "Quark spectrum near chiral and color-superconducting phase transitions Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,056003."— Presentation transcript:

1 Quark spectrum near chiral and color-superconducting phase transitions Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,056003 (2004), M.K., T.Koide, T.Kunihiro and Y.Nemoto, hep-ph/0502035, M.K., T.Kunihiro and Y.Nemoto, in preparation. International Workshop on "Chiral Restoration in Nuclear Medium"

2 1, 1, Introduction

3 150~170MeV Phase Diagram of QCD Color Superconductivity(CSC) Hadrons T Chiral Symm. Broken 0  ~100MeV Hadronic excitations in QGP phase soft mode of chiral transition - Hatsuda, Kunihiro. qq bound state - Shuryak, Zahed; Brown, Lee, Rho, Shuryak. Lattice simulations – Asakawa, Hatsuda; etc. Pre-critical region of CSC large pair fluctuations  precursory phenomena of CSC M.K., et al., 2002,2004

4 Formation of Pseudogap in CSC M. K. et al. PRD70, 956003(2004) Let ’ s see the property of quarks near T c of (1) the CSC. (2) the  SB. the “pseudogap region” above the CSC phase.

5 Nambu-Jona-Lasinio model (2-flavor,chiral limit) :  : SU(2) F Pauli matrices : SU(3) C Gell-Mann matrices C :charge conjugation operator so as to reproduce Parameters: Klevansky(1992), T.M.Schwarz et al.(1999) M.K. et al., (2002) 2SC is realized at low  and near T c. We neglect the gluon degree of freedom. Notice: NJL model

6 2, 2, Quarks above CSC phase transition T 

7 Response Func. of Pair Field Response Fucntion D(k,  ) in linear response theory & RPA Spectral Function As T  T c, the peak grows. The soft mode of the CSC trans. ε→ 0 (T → T C ) for k=0 The peak grows from e ~ 0.2 electric SC : e ~ 0.005  = 400 MeV M.K., et al., PRD 65, 091504 (2002)

8 T-matrix Approximation Quark Green function : :T-matrix Self-energy: Decomposition of G: positive energy part

9 Dispersion Relation of Quarks  =   (p) rapid increase around  =0  [MeV] k [MeV] 40 80 0 -40 -80 400 320 480 0  k kFkF 0  k kFkF Normal Super  = 400 MeV  =0.01 M. K. et al. 2002, 2004 w.f. renormalization  still Fermi-liquid-like However,

10 stronger diquark coupling G C Diquark Coupling Dependence GCGC ×1.3×1.5  = 400 MeV  =0.01

11 Resonant Scattering of Quarks G C =4.67GeV -2 Janko, Maly, Levin, PRB56,R11407 (1995)

12 Resonant Scattering of Quarks G C =4.67GeV -2 Mixing between quarks and holes  k  n f (  )

13 3, 3, Quarks above chiral phase transition T 

14 Quarks at very high T 1-loop (g<<1) Hard Thermal Loop ( p, , m q <<T ) dispersion relations plasmino

15 Quarks at very high T 1-loop(g<<1) Hard Thermal Loop approximation( p, , m q <<T ) dispersion relations

16 Soft Mode of Chiral Transition Response Fucntion D(k,  )  fluctuations of the chiral order parameter Spectral Function ε→ 0 (T → T C ) for k=0 T  Hatsuda, Kunihiro ( ’ 85)

17 Quark Self-enrgy Quark Green function : :free quark progagator Self-energy: in the chiral limit

18 Spectral Function of Quarks  [MeV] k [MeV]  = 0 MeV T = 200MeV positive energy part  - ( ,k) k [MeV] sharp peak with negative dispersion  [MeV] quasiparticle peak  ~ k

19 Spectral Function of Quarks  [MeV] k [MeV]  = 0 MeV T = 200MeV positive energy part  - ( ,k) k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV]

20 Resonant Scatterings of Quarks These resonant scatterings affect the peaks of the spectral functions in a non-trivial way.

21 k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.05

22 k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.1

23 k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.15

24 k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.2

25 k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.25

26 k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.3

27 k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.35

28 k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.4

29 k [MeV]  [MeV]  - ( ,k)  + ( ,k) k [MeV] T dependence  = 0.5

30 SummarySummary The soft mode associated with the chiral and color-superconducting phase transitions strongly affects the property of quarks near T c. T 0  They can be understood through the resonant scattering of quarks. Future: finite quark mass, finite density, phenomenological applications

31  0 ( ,k)  = 400 MeV  =0.01 Spectral Function of Quarks k  0  [MeV] quasi-particle peak,  =    k)~ k  Depression at Fermi surface Im   ,k=k F )  [MeV] The peak in Im  around  =0 owing to the decaying process: k [MeV] kFkF kFkF


Download ppt "Quark spectrum near chiral and color-superconducting phase transitions Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,056003."

Similar presentations


Ads by Google