Download presentation
Presentation is loading. Please wait.
Published byAlicia Patterson Modified over 9 years ago
1
3-Approximation Algorithm for Joint Routing and Link Scheduling in Wireless Relay Networks Chi-Yao Hong ( 洪啟堯 ) and Ai-Chun Pang ( 逄愛君 ) Dept. of Electrical and Computer Engineering, National Taiwan University IEEE Transactions on Wireless Communications, Vol. 8, No 2, Feb. 2009
2
2 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Agenda Introduction A joint and link-scheduling algorithm Linear programming based routing Makespan link scheduling Time complexity analysis Performance evaluation Conclusion
3
3 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Introduction Resource control functions Link scheduling algorithm NP-complete problem [7] Routing scheduling algorithm N-RS N-RSN-RS RS RS RS RS RSRS MR-BS MS
4
4 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Introduction Related work Link scheduling algorithm With QoS consideration [1]-[3] Only Best-effort (BE) consideration Without QoS consideration [4]-[7] System throughput as an essential performance Link scheduling algorithm+ routing algorithm Higher time-complexity [9]
5
5 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Introduction Goals Maximize the network throughput Joint link scheduling and routing algorithms
6
6 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Problem Definition RS MR-BS MS Network Topology Given the network topology BSRSMS Directed Graph G=(V,E) BS RS MS (1) (2) (3) (4) (5) (6) (7)
7
7 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Problem Definition Given the network topology BSRSMS Directed Graph G=(V,E) BS RS MS (1) (2) (3) (4) (5) (6) (7) Conflict Graph G c =(V c,E c ) 3 1 24 57 6
8
8 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Problem Definition Three disjoint subsets of the vertex set V V B : the set of BS V R : the set of RSs V S : the set of SSs Traffic demands p s Aggregate uplink traffic for n s, for all n s belong to V S BS RS MS
9
9 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Linear Programming Based Routing Objective function: Minimize the scheduling length Subject to (1) (2) Aggregation traffic from n i to n j The total time of n i for transmitting the data nrnr njnj Flow Conservation constraints for RS n j
10
10 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Linear Programming Based Routing Objective function: Minimize the scheduling length Subject to (3) (4) (5) Each SS n s has no incoming traffic Each BS n b has no outgoing traffic The nonnegative flow constraint
11
11 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Linear Programming Based Routing Objective function: Minimize the scheduling length Subject to (6) The traffic demand constraint p s for each SS n s
12
12 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Makespan Link Scheduling Input 56 1 Conflict Graph G c 32 4 7 l c (1)=1 l c (3)=3 l c (6)=6 l c (2)=2 l c (5)=5 l c (7)=7 l c (4)=4 ξ c (1)=1+2+3+4=10 ξ c (3)=3+1+4+6=14 ξ c (6)=6+3+4+7=20 ξ c (7)=7+4+5+6=22 ξ c (5)=5+2+4+7=18 ξ c (2)=2+1+4+5=12 ξ c (4)=4+1+2+3=10
13
13 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Makespan Link Scheduling Initialization 56 1 Conflict Graph G c 32 4 7 l c (1)=1 l c (3)=3 l c (6)=6 l c (2)=2 l c (5)=5 l c (7)=7 l c (4)=4 ξ c (1)=1+2+3+4=10 ξ c (3)=3+1+4+6=14 ξ c (6)=6+3+4+7=20 ξ c (7)=7+4+5+6=22 ξ c (5)=5+2+4+7=18 ξ c (2)=2+1+4+5=12 ξ c (4)=4+1+2+3=10
14
14 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Makespan Link Scheduling 56 1 32 4 7 l c (1)=1 l c (3)=3 l c (6)=6 l c (2)=2 l c (5)=5 l c (7)=7 l c (4)=4 ξ c (1)=1+2+3+4=10 ξ c (3)=3+1+4+6=14 ξ c (6)=6+3+4+7=20 ξ c (7)=7+4+5+6=22 ξ c (5)=5+2+4+7=18 ξ c (2)=2+1+4+5=12 ξ c (4)=4+1+2+3=10 Slot τ=1 l c (1)=0 ξ c (1)=0+2+3+4=9 l c (5)=4 ξ c (5)=4+2+4+7=17 l c (6)=5 ξ c (6)=5+3+4+7=19
15
15 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Makespan Link Scheduling 56 32 4 7 l c (3)=3 l c (2)=2 l c (7)=7 l c (4)=4 ξ c (3)=3+1+4+6=14 ξ c (7)=7+4+5+6=22 ξ c (2)=2+1+4+5=12 ξ c (4)=4+1+2+3=10 Slot τ=2 l c (5)=4 ξ c (5)=4+2+4+7=17 l c (6)=5 ξ c (6)=5+3+4+7=19 l c (2)=1 ξ c (2)=1+1+4+5=11
16
16 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Time Complexity Each time slot in Algorithm : the maximal degree of vertices in G c Time Complexity k : Number of time slots
17
17 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Performance evaluation Simulator For LP-routing problem: LINGO For IMS: unknown Data rate Access link = 6 Mbps Relay link = 18.36 Mbps Comparisons Dijkstra’s shortest path algorithm Centralized scheduling [15] SS RS BS
18
18 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Performance evaluation Traffic demand p s for each SS s Gamma distribution P mean : mean traffic demand P var : variance of p s
19
19 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Performance evaluation
20
20 Speaker : Chi-Tao Chiang ( 蔣季陶 ) Meeting 報告簡報 Conclusion Joint routing and link-scheduling algorithm for TDMA-based relay networks Simulation results Better throughput than other protocols
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.