Download presentation
1
R.S. Orr 2009 TRIUMF Summer Institute
Hadronic Calorimeters Strong (nuclear) interaction cascade Similar to EM shower hadronic interaction length Energy Resolution shower fluctuations leakage of energy hadronic calorimeter nearly always sampling calorimeters invisible energy loss mechanisms Shower length R.S. Orr 2009 TRIUMF Summer Institute 1
2
R.S. Orr 2009 TRIUMF Summer Institute
Sampling Calorimeter R.S. Orr 2009 TRIUMF Summer Institute 2
3
R.S. Orr 2009 TRIUMF Summer Institute
Hadronic Lateral Shower Profile Hadronic shower much broader than EM Fe Mean hadronic versus MCS Fe R.S. Orr 2009 TRIUMF Summer Institute 3
4
R.S. Orr 2009 TRIUMF Summer Institute
Hadronic Shower Longitudinal Development ZEUS Uranium/Scint R.S. Orr 2009 TRIUMF Summer Institute 4
5
R.S. Orr 2009 TRIUMF Summer Institute
Lateral Scaling with Material 90% containment does not scale core scales R.S. Orr 2009 TRIUMF Summer Institute 5
6
R.S. Orr 2009 TRIUMF Summer Institute
Calorimeter Energy Resolution sampling and shower fluctuations energy number of samples energy deposited in a sampling step stochastic term R.S. Orr 2009 TRIUMF Summer Institute 6
7
R.S. Orr 2009 TRIUMF Summer Institute
Calorimeter Energy Resolution e.g. # of photo-electrons in PM, ion pairs in liquid argon counting statics in sensor system mean # of photo-electrons in PM per unit of incident energy this term is usually negligible shower leakage fluctuations – make calorimeter as deep as $$ allow R.S. Orr 2009 TRIUMF Summer Institute 7
8
R.S. Orr 2009 TRIUMF Summer Institute
Calorimeter Energy Resolution important for low level signal liquid argon electronics detector capacitance noise - detector or electronics N channels with some intrinsic noise noise (energy) deposited energy behaviour increases with number of channels summed over R.S. Orr 2009 TRIUMF Summer Institute 8
9
R.S. Orr 2009 TRIUMF Summer Institute
Calorimeter Energy Resolution inter - calibration uncertainty of channels constant in E fractional channel to channel gain uncertainty spatial in-homogeneity of detector energy response dead space temperature variation radiation damage all these influence spatial variation of effective energy response constant R.S. Orr 2009 TRIUMF Summer Institute 9
10
R.S. Orr 2009 TRIUMF Summer Institute
Calorimeter non-uniformity R.S. Orr 2009 TRIUMF Summer Institute 10
11
R.S. Orr 2009 TRIUMF Summer Institute
Generic Detector Layers of Detector Systems around Collision Point R.S. Orr 2009 TRIUMF Summer Institute 11
12
R.S. Orr 2009 TRIUMF Summer Institute
Semi-empirical model of hadron shower development hadronic part electromagnetic part radiation length interaction length - significant amount of material in front of calorimeter (magnet coil etc.) R.S. Orr 2009 TRIUMF Summer Institute 12
13
R.S. Orr 2009 TRIUMF Summer Institute
More Rules of Thumb for the Hobbyist Mixtures in sampling calorimeters Shower maximum active + passive material 95% Longitudinal containment 95% Lateral containment R.S. Orr 2009 TRIUMF Summer Institute 13
14
Typical Calorimeter Resolutions
Homogeneous EM (crystal, glass) CLEO, Crystal Ball, Belle, CMS..... Sampling EM (Pb/Scint, Pb/LAr) CDF, ZEUS, ALEPH, ATLAS..... Non-compensating HAD (Fe/Scint, Fe/LAr) CDF,ATLAS,H1, LEP = everyone Compensating HAD (DU/Scint) ZEUS, HELIOS R.S. Orr 2009 TRIUMF Summer Institute 14
15
R.S. Orr 2009 TRIUMF Summer Institute
Invisible Energy in Hadronic Showers R.S. Orr 2009 TRIUMF Summer Institute 15
16
R.S. Orr 2009 TRIUMF Summer Institute
Difference in Response to Electrons and Hadrons R.S. Orr 2009 TRIUMF Summer Institute 16
17
R.S. Orr 2009 TRIUMF Summer Institute
Effect of e/h on Energy Resolution Resolution tail Fe/Scint DU/Scint R.S. Orr 2009 TRIUMF Summer Institute 17
18
R.S. Orr 2009 TRIUMF Summer Institute
Effect of e/h on Linearity Fe/Scint DU/Scint R.S. Orr 2009 TRIUMF Summer Institute 18
19
R.S. Orr 2009 TRIUMF Summer Institute
19
20
R.S. Orr 2009 TRIUMF Summer Institute
Weighting to Correct for e/h Energy resolution does not improve Weight down EM part of shower tune R.S. Orr 2009 TRIUMF Summer Institute 20
21
R.S. Orr 2009 TRIUMF Summer Institute
Jet Energy Resolution Jet-jet Mass Resolution Fluctuations between EM and Hadronic component in jets will degrade the energy resolution for jets Effects other than e/h dominate the 2-jet mass resoluton R.S. Orr 2009 TRIUMF Summer Institute 21
22
R.S. Orr 2009 TRIUMF Summer Institute
Jet-Jet Mass Resolutions R.S. Orr 2009 TRIUMF Summer Institute 22
23
R.S. Orr 2009 TRIUMF Summer Institute
Conceptual Readout Schemes R.S. Orr 2009 TRIUMF Summer Institute 23
24
R.S. Orr 2009 TRIUMF Summer Institute
ZEUS Forward Calorimeter R.S. Orr 2009 TRIUMF Summer Institute 24
25
R.S. Orr 2009 TRIUMF Summer Institute
25
26
R.S. Orr 2009 TRIUMF Summer Institute
Generic Detector Layers of Detector Systems around Collision Point R.S. Orr 2009 TRIUMF Summer Institute 26
27
LAr Calorimetry Five different detector technologies
Calorimetry coverage to SM Higgs Discovery Potential EM Calorimeter Hadronic & Forward Calorimeters EM Calorimeter WW Fusion Tag jets in Forward Cal 27
28
LAr Calorimeter Technology Overview
Design Goals Technology EM Calorimeters ( ) and Presampler ( ) Hadronic Endcap ( ) Forward Calorimeter ( ) Lead/Copper-Kapton/Liquid Argon Accordion Structure Copper/Copper-Kapton/Liquid Argon Plate Structure Tungsten/Copper/Liquid Argon Paraxial Rod Structure 28
29
LAr and Tile Calorimeters
Tile barrel Tile extended barrel LAr hadronic end-cap (HEC) LAr EM end-cap (EMEC) LAr EM barrel LAr forward calorimeter (FCAL) 29
30
Electromagnetic Barrel
Barrel Module Schematic with presampler Half Barrel Assembly 2x16 modules I.R/O.R 1470/2000 mm 3 longitudinal samples presampler 64 gaps /module 2.1 mm gap 2x3100 mm long R.S. Orr 2009 TRIUMF Summer Institute 30
31
R.S. Orr 2009 TRIUMF Summer Institute
Electromagnetic Endcap 2x8 modules Diam mm 3 longitudinal samples Front sampling of 6 for , - strips. 96 gaps /module outer wheel 32 gaps/module inner wheel mm gap outer mm inner R.S. Orr 2009 TRIUMF Summer Institute 31
32
R.S. Orr 2009 TRIUMF Summer Institute
Accordion Structure Pb Absorber Honeycomb spacer & Cu/Kapton electrode R.S. Orr 2009 TRIUMF Summer Institute 32
33
R.S. Orr 2009 TRIUMF Summer Institute
Prototype of EM endcap Detail of Kaptons R.S. Orr 2009 TRIUMF Summer Institute 33
34
R.S. Orr 2009 TRIUMF Summer Institute
ATLAS FCAL R.S. Orr 2009 TRIUMF Summer Institute 34
35
Pictures of assembly process
36
LAr Forward Calorimeters
FCAL C assembly into tube – Fall 2003 36
37
Liquid Argon Gap Tungsten Rod
38
R.S. Orr 2009 TRIUMF Summer Institute
ATLAS HEC Structure R.S. Orr 2009 TRIUMF Summer Institute 38
39
Transformer matching Does not work in magnetic field. Long readout cables slow down signal Large capacitance, large noise EST Works in magnetic field Low capacitance
40
Hadronic Endcap Calorimeter (HEC)
Front Wheel Rear Wheel Wheel Assembly Composed of 2 wheels per end Front wheel: 67 t 25 mm Cu plates Back wheel: 90 t 50 mm Cu plates 40
41
Oct 2002 41
42
42
43
Electromagnetic Endcap
43
44
Hadronic Endcap 44
45
HEC – FCAL Assembly 45
46
Test Beam Single Particle Energy Resolution
Noise subtracted energy resolution
47
Noise Level in LAr Calorimeters
Since the FCal is in the very forward region, these noise levels are OK
48
Signal Shape before startup
49
Lar Endcap Installed in ATLAS
49
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.