Download presentation
Presentation is loading. Please wait.
Published byBuck Quinn Modified over 9 years ago
1
Lecture 01 - Introduction Eran Yahav 1
2
2 Who? Eran Yahav Taub 734 Tel: 8294318 yahave@cs.technion.ac.il Monday 13:30-14:30 http://www.cs.tecnion.ac.il/~yahave Yuri Meshman (TA) Taub 329 Tel: 8294890
3
What? Understand program analysis & synthesis apply these techniques in your research understand jargon/papers conduct research in this area We will cover some areas in more depth than others What will help us TA: Yuri Meshman 3-5 homework assignments Small lightweight project No exam 3
4
Your slides have dark background 4 (image source: http://www.apolloideas.com/blog/archives/201)http://www.apolloideas.com/blog/archives/201
5
5
6
Your slides don’t have everything you say written on them Yes, I know, this is by design Slides are a teaching aid Not a replacement for attending lectures If you don’t attend lectures or attend and don’t listen, you will miss some things If you want slides that have all the material written on them nicely, that format is commonly known as a textbook See how horrible this slide is? You won’t see many slides with so much text as this one in the rest of the course 6
7
Software is Everywhere
9
Unreliable
10
December 31, 2008 10
11
Zune Bug 1 while (days > 365) { 2 if (IsLeapYear(year)) { 3 if (days > 366) { 4 days -= 366; 5 year += 1; 6 } 7 } else { 8 days -= 365; 9 year += 1; 10 } 11 } 11
12
Zune Bug 1 while (366 > 365) { 2 if (IsLeapYear(2008)) { 3 if (366 > 366) { 4 days -= 366; 5 year += 1; 6 } 7 } else { 8 days -= 365; 9 year += 1; 10 } 11 } 12
13
Zune Bug 1 while (366 > 365) { 2 if (IsLeapYear(2008)) { 3 if (366 > 366) { 4 days -= 366; 5 year += 1; 6 } 7 } else { 8 days -= 365; 9 year += 1; 10 } 11 } Suggested solution: wait for tomorrow 13
14
February 25, 1991 14
15
Patriot Bug - Rounding Error Time measured in 1/10 seconds Binary expansion of 1/10 (non-terminating): 0.0001100110011001100110011001100.... 24-bit register (chopped) 0.00011001100110011001100 error of 0.0000000000000000000000011001100... binary, or ~0.000000095 decimal After 100 hours of operation error is 0.000000095×100×3600×10=0.34 A Scud travels at about 1,676 meters per second so travels more than half a kilometer in this time 15
16
Patriot Bug - Rounding Error Time measured in 1/10 seconds Binary expansion of 1/10 (non-terminating): 0.0001100110011001100110011001100.... 24-bit register (chopped) 0.00011001100110011001100 error of 0.0000000000000000000000011001100... binary, or ~0.000000095 decimal After 100 hours of operation error is 0.000000095×100×3600×10=0.34 A Scud travels at about 1,676 meters per second, and so travels more than half a kilometer in this time Suggested solution: reboot every 10 hours 16
17
August 13, 2003 I just want to say LOVE YOU SAN!! (W32.Blaster.Worm) 17
18
Windows Exploit(s) Buffer Overflow void foo (char *x) { char buf[2]; strcpy(buf, x); } int main (int argc, char *argv[]) { foo(argv[1]); }./a.out abracadabra Segmentation fault Stack grows this way Memory addresses Previous frame Return address Saved FP char* x buf[2] … (YMMV) 18
19
Windows Exploit(s) Buffer Overflow void foo (char *x) { char buf[2]; strcpy(buf, x); } int main (int argc, char *argv[]) { foo(argv[1]); }./a.out abracadabra Segmentation fault Stack grows this way Memory addresses Previous frame Return address Saved FP char* x buf[2] … ab (YMMV) 19
20
Windows Exploit(s) Buffer Overflow void foo (char *x) { char buf[2]; strcpy(buf, x); } int main (int argc, char *argv[]) { foo(argv[1]); }./a.out abracadabra Segmentation fault Stack grows this way Memory addresses Previous frame Return address Saved FP char* x buf[2] … ab ra (YMMV) 20
21
Windows Exploit(s) Buffer Overflow void foo (char *x) { char buf[2]; strcpy(buf, x); } int main (int argc, char *argv[]) { foo(argv[1]); }./a.out abracadabra Segmentation fault Stack grows this way Memory addresses Previous frame Return address Saved FP char* x buf[2] … ab ra ca (YMMV) 21
22
Windows Exploit(s) Buffer Overflow void foo (char *x) { char buf[2]; strcpy(buf, x); } int main (int argc, char *argv[]) { foo(argv[1]); }./a.out abracadabra Segmentation fault Stack grows this way Memory addresses Previous frame Return address Saved FP char* x buf[2] … ab ra ca da (YMMV) 22
23
Windows Exploit(s) Buffer Overflow void foo (char *x) { char buf[2]; strcpy(buf, x); } int main (int argc, char *argv[]) { foo(argv[1]); }./a.out abracadabra Segmentation fault Stack grows this way Memory addresses Previous frame Return address Saved FP char* x buf[2] … ab ra ca da br (YMMV) 23
24
(In)correct Usage of APIs Application Trend: Increasing number of libraries and APIs – Non-trivial restrictions on permitted sequences of operations Typestate: Temporal safety properties – What sequence of operations are permitted on an object? – Encoded as DFA e.g. “Don’t use a Socket unless it is connected” initconnectedclosed err connect()close() getInputStream() getOutputStream() getInputStream() getOutputStream() getInputStream() getOutputStream() close() * 24
25
Challenges class SocketHolder { Socket s; } Socket makeSocket() { return new Socket(); // A } open(Socket l) { l.connect(); } talk(Socket s) { s.getOutputStream()).write(“hello”); } main() { Set set = new HashSet (); while(…) { SocketHolder h = new SocketHolder(); h.s = makeSocket(); set.add(h) } for (Iterator it = set.iterator(); …) { Socket g = it.next().s; open(g); talk(g); }
26
But there is hope ! Microsoft’s Static Driver Verifier (from MSR) Found 100 ’s of errors in 140 drivers, right before Windows 7 release Microsoft uses and distributes the tool 26
27
But there is hope ! “Things like even software verification, this has been the Holy Grail of computer science for many decades but now in some very key areas, for example, driver verification we’re building tools that can do actual proof about the software and how it works in order to guarantee the reliability." -- Bill Gates, 2002 27
28
But there is hope ! The Astree Static Analyzer has been used to automatically prove the absence of run-time errors in Airbus’s A340 and A380’s primary flight control software 28
29
But there is hope ! Companies such as IBM, Coverity, Klocwork, Grammatech create sophisticated code analysis tools 29
30
Theory + Practice In this course, we will study the core theoretical principles behind these approaches and learn how to apply them to build practical analysis engines 30
31
Approaches to Reliability General problem undecidable. There are two general classes of automated techniques for program analysis. We will cover both. 31
32
All behaviors in the universe Program BehaviorsOver-approximation Under-approximation Approaches to Reliability
33
Under-approximations standard testing, guided dynamic analysis, symbolic execution, … Focuses on a subset of behaviors Which subset? What guarantees can it provide? We will cover some of the more interesting ones 33
34
Over-approximations aka “Static Analysis” abstract interpretation, dataflow analysis, constraint-based analysis, type and effect systems Always err on the safe side Many applications: verification, bug finding, code synthesis, program understanding, … 34
35
Static Analysis Reason statically (at compile time) about the possible runtime behaviors of a program “The algorithmic discovery of properties of a program by inspection of its source text 1 ” -- Manna, Pnueli 1 Does not have to literally be the source text, just means w/o running it 35
36
Static Analysis Formalize software behavior in a mathematical model (semantics) Prove properties of the mathematical model Automatically, typically with approximation of the formal semantics Develop theory and tools for program correctness and robustness 36
37
program specification Abstract counter example Analyzer Valid Static Analysis
38
Verification Challenge I main(int i) { int x=3,y=1; do { y = y + 1; } while(--i > 0) assert 0 < x + y } Determine what states can arise during any execution Challenge: set of states is unbounded 38
39
Abstract Interpretation main(int i) { int x=3,y=1; do { y = y + 1; } while(--i > 0) assert 0 < x + y } Recipe 1) Abstraction 2) Transformers 3) Exploration Challenge: set of states is unbounded Solution: compute a bounded representation of (a superset) of program states Determine what states can arise during any execution 39
40
1) Abstraction main(int i) { int x=3,y=1; do { y = y + 1; } while(--i > 0) assert 0 < x + y } concrete state abstract state (sign) : Var Z # : Var {+, 0, -, ?} xyi 31 7 xyi ++ + 32 6 xyi … 40
41
2) Transformers main(int i) { int x=3,y=1; do { y = y + 1; } while(--i > 0) assert 0 < x + y } concrete transformer abstract transformer xyi ++ 0 xyi 31 0 y = y + 1 xyi 32 0 xyi ++ 0 +- 0 +? 0 + 00 ++ 0 +? 0 +? 0 41
42
3) Exploration ++ ? ++ ? xyi main(int i) { int x=3,y=1; do { y = y + 1; } while(--i > 0) assert 0 < x + y } ++ ? ++ ? ?? ? xyi ++ ? ++ ? ++ ? ++ ? ++ ? ++ ? 42
43
Incompleteness 43 main(int i) { int x=3,y=1; do { y = y - 2; y = y + 3; } while(--i > 0) assert 0 < x + y } +? ? +? ? xyi +? ? ++ ? ?? ? xyi +? ? +? ? +? ?
44
Parity Abstraction 44 challenge: how to find “the right” abstraction while (x !=1 ) do { if (x % 2) == 0 { x := x / 2; } else { x := x * 3 + 1; assert (x %2 ==0); }
45
Example: Shape (Heap) Analysis void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } 45
46
Example: Shape (Heap) Analysis void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 46
47
Example: Shape (Heap) Analysis emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 47
48
Example: Shape (Heap) Analysis t emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 48
49
Example: Shape (Heap) Analysis t t emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 49
50
Example: Shape (Heap) Analysis t t t x emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 50
51
Example: Shape (Heap) Analysis t t t x t x emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 51
52
Example: Shape (Heap) Analysis x t t t t x t x emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 52
53
Example: Shape (Heap) Analysis x t t x n t t t x t x emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 53
54
Example: Shape (Heap) Analysis x t t x n t t n t x t x t x emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 54
55
Example: Shape (Heap) Analysis t x n x t t x n t t n t x t x t x emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 55
56
Example: Shape (Heap) Analysis t x n x t n x t t x n t t n t x t x t x emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 56
57
Example: Shape (Heap) Analysis t x n x t n x t n n x t t x n t t n t x t x t x emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 57
58
Example: Shape (Heap) Analysis t x n x t n x t n n x t n n x t t x n t t n t x t x t x emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 58
59
Example: Shape (Heap) Analysis t x n x t n x t n n x t n n x t t x n t t n t x t x t x emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) t x nn 59
60
Example: Shape (Heap) Analysis t x n x t n x t n n x t n n x t t x n t t n t x t x t x emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) t x nn x t n n 60
61
Example: Shape (Heap) Analysis t x n x t n x t n n x t n n x t t x n t t n t x t x t x emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) t x nn x t n n x t n n n 61
62
Example: Shape (Heap) Analysis t x n x t n x t n n x t n n x t t x n t t n t x t x t x emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) t x nn x t n n x t n n n x t n n n 62
63
Example: Shape (Heap) Analysis t x n x t n x t n n x t n n x t t x n t t n t x t x t x emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) t x nn x t n n x t n n n x t n n n x t n n n top 63
64
Example: Shape (Heap) Analysis t x n x t n x t n n x t n n x t t x n t t n t x t x t x emp void stack-init(int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) t x nn x t n n x t n n n x t n n n x t n n n top 64
65
Static Analysis in one slide 1) Abstraction Concrete state x t n n 65
66
Static Analysis in one slide 1) Abstraction Concrete state x t n nn x t n 66
67
Static Analysis in one slide 1) Abstraction Concrete stateAbstract state x t n nn x t n 67
68
Static Analysis in one slide 1) Abstraction Concrete stateAbstract state x t n nn x t n 2) Transformers n x t n t n x n t->n = x 68
69
Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 69
70
emp Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 70
71
t emp Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 71
72
t t emp Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 72
73
t t t x emp Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) 73
74
t t t x emp Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) t x Top 74
75
t t t x t x emp Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) t x Top 75
76
x t t t t x t x emp Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) t x Top 76
77
x t t x n t t t x t x emp Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) t x Top 77
78
x t t x n t t n t x t x t x emp Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) t x Top 78
79
x t t x n t t n t x t x t x emp Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) n t x Top t x 79
80
t x n x t t x n t t n t x t x t x emp Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) n t x Top t x 80
81
t x n x t n x t t x n t t n t x t x t x emp Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) n t x Top t x 81
82
t x n x t n x t n n x t t x n t t n t x t x t x emp Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) n t x Top t x 82
83
x t n n t x n x t n x t n n x t t x n t t n t x t x t x emp Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) n t x Top t x 83
84
x t n n t x n x t n x t n n x t t x n t t n t x t x t x emp x t n n Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) n t x Top t x 84
85
x t n n t x n x t n x t n n x t t x n t t n t x t x t x emp x t n n Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) x t n Top n n t x t x 85
86
x t n n t x n x t n x t n n x t t x n t t n t x t x t x emp x t n n x t n n Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) x t n Top n n t x t x 86
87
x t n n t x n x t n x t n n x t t x n t t n t x t x t x emp x t n n x t n n n x t n Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) x t n Top n n t x t x 87
88
x t n n t x n x t n x t n n x t t x n t t n t x t x t x emp x t n n x t n n n x t n t n x n Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) x t n Top n n t x t x 88
89
x t n n t x n x t n x t n n x t t x n t t n t x t x t x emp x t n n x t n n n x t n t n x n x t n n Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) x t n Top n n t x t x 89
90
x t n n t x n x t n x t n n x t t x n t t n t x t x t x emp x t n n x t n n n x t n t n x n x t n n Static Analysis void stack-init (int i) { Node* x = null; do { Node t = malloc(…) t->n = x; x = t; } while(--i>0) Top = x; } assert(acyclic(Top)) x t n Top n n t x t x x t n n 90
91
Example: Polyhedra (Numerical) Domain proc MC(n:int) returns (r:int) var t1:int, t2:int; begin if (n>100) then r = n-10; else t1 = n + 11; t2 = MC(t1); r = MC(t2); endif; end var a:int, b:int; begin b = MC(a); end What is the result of this program? 91
92
McCarthy 91 function proc MC (n : int) returns (r : int) var t1 : int, t2 : int; begin /* (L6 C5) top */ if n > 100 then /* (L7 C17) [|n-101>=0|] */ r = n - 10; /* (L8 C14) [|-n+r+10=0; n-101>=0|] */ else /* (L9 C6) [|-n+100>=0|] */ t1 = n + 11; /* (L10 C17) [|-n+t1-11=0; -n+100>=0|] */ t2 = MC(t1); /* (L11 C17) [|-n+t1-11=0; -n+100>=0; -n+t2-1>=0; t2-91>=0|] */ r = MC(t2); /* (L12 C16) [|-n+t1-11=0; -n+100>=0; -n+t2-1>=0; t2-91>=0; r-t2+10>=0; r-91>=0|] */ endif; /* (L13 C8) [|-n+r+10>=0; r-91>=0|] */ end var a : int, b : int; begin /* (L18 C5) top */ b = MC(a); /* (L19 C12) [|-a+b+10>=0; b-91>=0|] */ end if (n>=101) then n-10 else 91 92
93
Some things that should trouble you does a result always exist? does the recipe always converge? is the result always “the best”? how do I pick my abstraction? how do come up with abstract transformers? 93
94
Recap: program analysis Reason statically (at compile time) about the possible runtime behaviors of a program use sound over-approximation of program behavior abstract interpretation abstract domain transformers exploration (fixed-point computation) finding the right abstraction? 94
95
Program Synthesis Automatically synthesize a program that is correct-by-construction from a (higher-level) specification 95 programspecification Synthesizer
96
Program Synthesis: Techniques Gen/Test Theorem Proving Games SAT/SMT Solvers Transformational Synthesis Abstract Interpretation … (we will not be able to cover all in depth) 96
97
Synthesis Challenge I signum(int x) { if (x>0) return 1; else if (x<0) return -1; else return 0; } 97 Challenge: Generate efficient assembly code for “signum” # x in d0 add.l d0, d0 | add d0 to itself subx.l d1,d1 | subtract (d1+carry) from d1 negx.l d0 | put (0-d0-carry) into d0 addx.l d1, d1 | add (d1+carry) to d1 # signum(x) is now in d1
98
Superoptimizer [Massalin, 1987] exhaustive search over assembly programs order search by increasing program length check input/output “equivalence” with original code boolean test – construct boolean formula for functions and compare them not practical probabilistic test – run many times on some inputs and check if the outputs of both programs are the same expensive, only applied to critical pieces of code (e.g., common libraries) 98
99
Denali Superoptimizer [Joshi, Nelson, Randall, 2001] “a refutation-based automatic theorem-prover is in fact a general-purpose goal-directed search engine, which can perform a goal-directed search for anything that can be specified in its declarative input language. Successful proofs correspond to unsuccessful searches, and vice versa.” 99 (more details later in the course…) Turn the search of a program into a search of counter-example in a theorem prover
100
{ ……………… …… …………………. ……………………. ………………………… } P1() Synthesis of Atomic Sections 100 { …………………………… ……………………. … } P2() atomic { ………………….. …… ……………………. ……………… …………………… } P3() atomic Safety Specification: S
101
{ ……………… …… …………………. ……………………. ………………………… } P1() { …………………………… ……………………. … } P2() { ………………….. …… ……………………. ……………… …………………… } P3() Safety Specification: S 101 Synthesis of Atomic Sections
102
less atomic more atomic 102 Semantic Optimized Search [vechev, yahav, bacon and rinetzky, 2007]
103
unsigned int got_lock = 0;... 1: while(*) {... 2: if (*) { 3: lock(); 4: got_lock++; }... 5: if (got_lock != 0){ 6: unlock(); } 7: got_lock--;... } lock() { lock: LOCK:=1;} unlock(){ unlock: LOCK:=0;} Specification P1: do not acquire a lock twice P2: do not call unlock without holding the lock P1: always( line=lock implies next( line!=lock w-until line=unlock )) P2: ( line!=unlock w-until line=lock )) and always( line=unlock implies next( line!=unlock w-until line=lock )) 103 (slide adapted with permission from Barbara Jobstmann) Program Repair as a Game [Jobstmann et. al. 2005]
104
How to Repair a Reactive System? 1. Add freedom choice for the system, space of permitted modifications to the system 2. Source code ➝ transition system (game) non-determinism in the program (demonic) non-determinism in permitted modification (angelic) 3. Specification ➝ monitor acceptance 4. Check if we can find system choices s.t. model is accepted by monitor product of trans. system and monitor search for winning strategy in game 104 (slide adapted with permission from Barbara Jobstmann)
105
unsigned int got_lock = 0;... 1: while(*) {... 2: if (*) { 3: lock(); 4: got_lock = 1; }... 5: if (got_lock != 0){ 6: unlock(); } 7: got_lock = 0;... } lock() { lock: LOCK:=1;} unlock(){ unlock: LOCK:=0;} Specification P1: do not acquire a lock twice P2: do not call unlock without holding the lock P1: always( line=lock implies next( line!=lock w-until line=unlock )) P2: ( line!=unlock w-until line=lock )) and always( line=unlock implies next( line!=unlock w-until line=lock )) 105 (slide adapted with permission from Barbara Jobstmann) Repaired Program
106
Partial Programs and SKETCH [aLisp: Andre et al 2002, Sketch: Solar-Lezama et al 2006] partial program freedom in games defines a space of program Given a partial program P with control variables C (“holes”), a specification S, the goal is to find an assignment for C such that P[C] S 106 double(x) { return 2 * x; } double(x) { return x + x; } Synthesizer double(x) { return ?? * x; }
107
SKETCH: isolate rightmost 0 107 bit[W] isolate0 (bit[W] x) { // W: word size bit[W] ret=0; for (int i = 0; i < W; i++) if (!x[i]) { ret[i] = 1; break; } return ret; } bit[W] isolate0Fast (bit[W] x) implements isolate0 { return ~x & (x+1); } bit[W] isolate0Sketched(bit[W] x) implements isolate0 { return ~(x + ??) & (x + ??); } (Hacker’s Delight, H.S. Warren)
108
Synthesis as generalized SAT The sketch synthesis problem c x spec(x) = sketch(x,c) Counter-example driven solver I = x = random-input() do I = I {x} find c such that i I (spec(i)=sketch(c,i)) if cannot find c then exit(“non-satisfiable sketch'') find x such that spec(x) sketch(x,c) while x != nil return c
109
SMARTEdit [Lau et al, 2000] synthesize editor macros (programs) from examples behind the scenes: machine learning techniques 109
110
110
111
111
112
112
113
Recap: program synthesis Automatically synthesize a program that is correct-by-construction from a (higher-level) specification many techniques games games with abstraction (abstract interpretation) 113
114
Next: Objectives 114
115
Objective 1 115 Understand the principles behind automated reasoning techniques and be able to apply them in your research
116
Objective 2 116 Understand how to use these principles to build a practical working analyzer
117
Objective 3 117 Gain familiarity with the state-of-the-art in the research area and be able to conduct research
118
Important Side Objective 118 Have fun !
119
119 Program Semantics: basis for everything Dynamic Analysis: using the semantics for cool analyses Abstract Interpretation: theory of approximation Predicate abstraction: a widely used form of A.I. Pointer analysis: how to abstract heaps Symbolic execution: merge of static and dynamic Program synthesis: discovery of code Program analysis frameworks: building an analysis More…? Coming up (extremely optimistic! more likely, we’ll cover half of it)
120
Course Project 120 Implement a program analyzer There is a default project we will give you a template to simplify your work But, if you have your own idea, we can discuss it. Please do not copy code from others
121
References Patriot bug: http://www.cs.usyd.edu.au/~alum/patriot_bug.html http://www.cs.usyd.edu.au/~alum/patriot_bug.html Patrick Cousot’s NYU lecture notes Zune bug: http://www.crunchgear.com/2008/12/31/zune-bug-explained-in-detail/http://www.crunchgear.com/2008/12/31/zune-bug-explained-in-detail/ Blaster worm: http://www.sans.org/security- resources/malwarefaq/w32_blasterworm.php http://www.sans.org/security- resources/malwarefaq/w32_blasterworm.php Interesting CACM article http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of- code-later/fulltext http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of- code-later/fulltext http://journals.cambridge.org/download.php?file=%2FMSC%2F MSC19_05%2FS0960129509990041a.pdf&code=d5af66869c188 1e31339879b90c07d0c http://journals.cambridge.org/download.php?file=%2FMSC%2F MSC19_05%2FS0960129509990041a.pdf&code=d5af66869c188 1e31339879b90c07d0c 121
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.