Download presentation
Presentation is loading. Please wait.
Published byKelley Sullivan Modified over 9 years ago
1
Probability Distributions Random Variables Experimental vs. Parent Distributions Binomial Distribution Poisson Distribution Gaussian Distribution
2
Random Variables https://en.wikipedia.org/wiki/Random_variable Die Roll Discrete Continuous Time between PMT hits in a HAWC tank “A random variable is a variable whose (measured) value is subject to variations due to chance…” A probability distribution describes the frequency of occurrence of a given value for a random variable
3
Experimental vs Parent Distributions ● Experimental: If I make n measurements of a quantity x, they can be sorted into a histogram to determine the experimental distribution.
4
Physics 6719 Lecture 2
15
Experimental vs Parent Distributions ● Experimental: If I make n measurements of a quantity x, they can be sorted into a histogram to determine the experimental distribution. If I divide the number of events in each bin by the total number of events, I have an experimental probability distribution. ●
16
Physics 6719 Lecture 2
17
Experimental vs Parent Distributions ● If I make n measurements of a quantity x, they can be sorted into a histogram to determine the experimental distribution. If I divide the number of events in each bin by the total number of events, I have an experimental probability distribution. The parent probability distribution is the distribution we would see as n → infinity. The physics lies in the properties (mean, width...) of the parent distribution, which we must try to infer ● ● ●
18
Binomial Distribution
19
http://www3.nd.edu/~rwilliam/stats1/x13.pdf X13.ppt
20
Example: If I toss a coin 3 times, what is the probability of obtaining 2 heads?
21
Example: A hospital admits four patients suffering from a disease for which the mortality rateis probabilities 80%.Findthe that(a)noneof the patients survives (b) exactly onesurvives(c)twoor survive. more
22
Example: In a scattering experiment, I count forward- and backward scattering events. I expect 50% forward and 50% backward. What I observe: T K 472 back scatter528 forward scatter What uncertainty should I quote?
23
Mean of Binomial Distribution Probability of getting successes out of N tries, when the probability for success in each try is p MEAN: If we perform an experiment N times, and ask how many successes are observed, the average number will approach the mean= ,
24
Derivation of Mean of Binomial Distribution http://www.math.ubc.ca/~feldman/m302/binomial.pdf
25
Invoke Binomial Formula Use p+1-p=1 Derivation of Mean of Binomial Distribution
26
Derivation of Variance of Binomial Distribution
28
Binomial Distribution Mathematica Demo http://demonstrations.wolfram.com/BinomialDistribution/ If a coin that comes up heads with probability p is tossed N times, the number of heads observed follows a binomial probability distribution.
29
Binomial Distribution Matlab Demo http://www.mathworks.com/help/stats/binomial-distribution.html
30
Poisson Distribution http://demonstrations.wolfram.com/PoissonDistribution/
31
Binomial Distribution Poisson Distribution
33
Derivation of Poisson Distribution
36
Example of Poisson Distribution ● Poisson distributed data can take on discrete integer values. n must be an integer need not be! ● ●
37
Example: Suppose there are 30,000 University of Utah students, of which 400 are permitted to carry guns. If I'm teaching an astronomy class of 120 students, what is the probability that one or more is carrying a gun?
38
Example: Counting Experiments (Lab #1)
39
Geiger-Műller Counter
40
Noble gas, e.g. Neon Cathode (- HV) Anode (+ HV)
41
Geiger-Műller Counter Noble gas, e.g. Neon Cathode (- HV) Anode(+ HV)Anode(+ HV) Ionizing particleIonizing particle - - - - + + + +
42
Geiger-Műller Counter: Equipment Schematic HVHV SourceSource G.M.G.M. ComparatorComparator oscilloscopeoscilloscope Scaler (“counter”) ● “Comparator” compares GM analog output with threshold voltage ● Outputs digital pulse if V> V GMTH Scaler counts digital pulses ●
43
Explain: Using a Geiger counter, I measure the activity of a weakly radioactive rock. I record a small number (<5) counts in a ten second interval. Why do I expect the number of counts I'd measure in repeated trials to be Poisson Distributed?
44
Discussion ● Can a Geiger-detector counting experiment be treated as a binomial distribution problem? What are some practical difficulties one might encounter in doing so? Would an interpretation via the Poisson distribution work? ● ●
45
Physics 6719 Lecture 2 What Happens as Becomes Large?
46
Physics 6719 Lecture 2 What Happens as Becomes Large?
47
Physics 6719 Lecture 2 What Happens as Becomes Large?
48
Physics 6719 Lecture 2 What Happens as Becomes Large?
49
Physics 6719 Lecture 2 13 January 2012 49 What Happens as Becomes Large?
50
Physics 6719 Lecture 2 13 January 2012 50 What Happens as Becomes Large?
51
Physics 6719 Lecture 2 What Happens as Becomes Large?
52
Physics 6719 Lecture 2 13 January 2012 52 What Happens as Becomes Large?
53
Physics 6719 Lecture 2 What Happens as Becomes Large?
54
Physics 6719 Lecture 2 What Happens as Becomes Large?
55
Physics 6719 Lecture 2 13 January 2012 55 What Happens as Becomes Large?
56
Poisson Distribution Mathematica Demo http://demonstrations.wolfram.com/PoissonDistribution/
57
Poisson Distribution Matlab Demo http://www.mathworks.com/help/stats/poisson- distribution.html
58
BinomialDistributionBinomialDistribution Poisson Distribution Gaussian (Normal) Distribution
59
https://www.mpp.mpg.de/~caldwell/ss09/Lecture3.pdf Gauss.pptx
60
Additional Reading and Problems ● Read in Taylor: – Ch 5: The Normal Distribution (Sections 1 and 2) – Chapter 10: The Binomial Distribution – Ch 11: The Poisson Distribution ● Try the problems: – 5.4, 5.6, 5.12 – 10.9, 10.10, 10.11, 10.20, 10.21, 10.22 – 11.1, 11.3, 11.8, 11.10, 11.14, 11.18, 11.20
61
Binomial Expansion https://en.wikipedia.org/wiki/Yang_Hui https://en.wikipedia.org/wiki/Pascal's_triangle https://en.wikipedia.org/wiki/Pascal's_rule "Pascal's triangle 5" by User:Conrad.Irwin originally User:Drini Yang Hui triangle (Pascal's triangle) using rod numerals, as depicted in a publication of Zhu Shijie in 1303 AD. rod numeralsZhu Shijie Blaise Pascal's version of the triangle
62
Binomial Formula for Positive Integral n or Binomial Coefficients http://mathworld.wolfram.com/BinomialTheorem.html or The total number of combinations of k objects selected from a set of n different objects. e.g
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.