Presentation is loading. Please wait.

Presentation is loading. Please wait.

Equilibrium Systems and Stress

Similar presentations


Presentation on theme: "Equilibrium Systems and Stress"— Presentation transcript:

1 Equilibrium Systems and Stress

2 Calculating Equilibrium Constants
Equilibrium Constant (Keq) is the ratio of the molar concentrations of products to reactants when at equilibrium. Keq = [products] [reactants] [ ] = concentration - molarity (M)

3 Example Problem #1 Keq = [products] [reactants]
Find the equilibrium constant for the following reaction if the concentrations at 25°C are [HI]= M, [H2]= M, and [I2]= M H2 + I HI Keq = [products] [reactants] Keq= [ M] = [ M][ M]

4 Le Chatlelier’s Principle
Stress: something that causes a change in a system at equilibrium However, the system will adjust to this new stress and come back into equilibrium again This is LE CHATLELIER’S PRINCIPLE

5 Le Chatelier’s Principle
Chemical equilibria responds to three kinds of stress: Changes in the concentration of reactants or products Changes in temperature Changes in pressure

6 Le Chatelier’s Principle
1. Changes in concentration of reactants and products This is a model of the system at equilibrium.

7 Changes in concentration of reactants and products
If more reactants are added to the system, the equilibrium changes. The system will respond by making more product. Stress is being added to the system here

8 Changes in concentration of reactants and products
1 CO(g) + 2H2(g) ↔ CH3OH(g) System at equilibrium: System with added reactant CO: To reach equilibrium again, the system will make more products: The reaction will shift to the right (the forward reaction)

9 Changes in concentration of reactants and products
1 CO(g) + 2H2(g) ↔ CH3OH(g) System at equilibrium: System with added product (CH3OH) To reach equilibrium, the system will make more reactants The reaction will shift to the left (reverse reaction)

10 Effects of Temperature
Temperature effects equilibrium the same way as concentration changes Remember… Exothermic Reactions – reactions that produce (or give off) heat Heat is a product Endothermic Reactions – reactions that absorb (or use) heat Heat is a reactant

11 Effects of Temperature
For exothermic forward reactions: Increasing the temperature of an equilibrium system usually leads to a shift in favor of the reactants For endothermic forward reactions: Increasing the temperature usually leads to a shift in favor of the products

12 Effects of Temperature
N2(g) O2(g) ↔ 2NO(g) System at Equilibrium System with added heat on the product side To reach equilibrium, the system will make more reactants The reaction favors the formation of reactants (reverse rxn)

13 Effects of Pressure For solutions, pressure has almost no effect on the equilibrium Gases are greatly effected by changes in pressure An increase in pressure causes the system to shift its equilibrium position to REDUCE THE PRESSURE To reduce pressure, the system needs to reduce the number of gas particles

14 Effect of Pressure Rule: At constant temperature, increasing the pressure on a gas causes the system to shift in the direction that reduces the number of moles of gas

15 Effects of Pressure Example: N2O4(g) ↔ 2NO2(g)
How many moles of gas are on the reactant side?_____ How many moles of gas are on the product side?_____ Which side has the greater amount of moles?________ If adding pressure to this system causes the system to respond by reducing the number of moles of gas, which way will the reaction go?

16 Real Life Applications
The “Bends” Nitrogen and other gases are dissolved in our blood nitrogen(g) ↔ nitrogen(dissolved) As the diver comes up from the high pressures of the ocean, the equilibrium shifts to the left If they come up too fast, nitrogen bubbles form in the blood and other body fluids cause severe abdominal pain and maybe death

17 Chemical Equilibrium Chemical Equilibrium 2CO(g) + O2(g) ↔ 2O2(g)
When the rates of the forward and reverse reactions are equal in a chemical reaction The concentration (amount) of reactants and products of the reaction remains the same Ex: 2CO(g) + O2(g) ↔ 2O2(g)

18 Chemical Equilibrium

19 Le Chatelier’s Principle
This is LE CHATELIER’S PRINCIPLE When a system at equilibrium is disturbed, the system adjusts in a way to reduce the change


Download ppt "Equilibrium Systems and Stress"

Similar presentations


Ads by Google