Presentation is loading. Please wait.

Presentation is loading. Please wait.

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Chapter 6 The Data Warehouse Jason C. H. Chen, Ph.D. Professor of MIS School of Business Administration.

Similar presentations


Presentation on theme: "Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Chapter 6 The Data Warehouse Jason C. H. Chen, Ph.D. Professor of MIS School of Business Administration."— Presentation transcript:

1 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Chapter 6 The Data Warehouse Jason C. H. Chen, Ph.D. Professor of MIS School of Business Administration Gonzaga University Spokane, WA 99223 chen@gonzaga.edu

2 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining 6.1 Operational Databases

3 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Data Modeling and Normalization One-to-One Relationships One-to-Many Relationships Many-to-Many Relationships

4 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Data Modeling and Normalization First Normal Form Second Normal Form Third Normal Form

5 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.1 A simple entity- relationship diagram

6 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining The Relational Model

7 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining

8

9 6.2 Data Warehouse Design

10 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.2 A data warehouse process model

11 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Entering Data into the Warehouse Independent Data Mart ETL (Extract, Transform, Load Routine) Metadata

12 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Structuring the Data Warehouse: The Star Schema Fact Table Dimension Tables Slowly Changing Dimensions

13 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.3 A star schema for credit cared purchases

14 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining The Multidimensionality of the Star Schema

15 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.4 Dimensions of the fact table shown in Figure 6.3

16 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Additional Relational Schemas Snowflake Schema Constellation Schema

17 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.5 A constellation schema for credit card purchases and promotions

18 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Decision Support: Analyzing the Warehouse Data Reporting Data Analyzing Data Knowledge Discovery

19 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining 6.3 On-line Analytical Processing

20 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining OLAP Operations Slice – A single dimension operation Dice – A multidimensional operation Roll-up – Aggregation, a higher level of generalization Drill-down – A greater level of detail the reverse of a roll-up Rotation – View data from a new perspective

21 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.6 A multidemensional cube for credit card purchases

22 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Concept Hierarchy A mapping that allows attributes to be viewed from varying levels of detail.

23 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.7 A concept hierarchy for location

24 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.8 Rolling up from months to quarters

25 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining 6.4 Excel Pivot Tables for Data Analysis

26 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Creating a Simple Pivot Table

27 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.9 A pivot table template

28 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Steps 1,2 (p.198)

29 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Steps 2, 3

30 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 3

31 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 4

32 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 5

33 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 6

34 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 7

35 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Result of Step 7 (p.198)

36 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.10 A summary report for income range

37 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining

38

39 Figure 6.10 A summary report for income range

40 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.9 A pivot table template

41 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 1, 2(bottom of p.198)

42 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 3 (top) and steps 1,2 3 (p.199)

43 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 4 (p.199)

44 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 4 (p.199)

45 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining

46 Steps 1,2

47 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 2

48 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining

49 Step 3 (p.200)

50 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 3 - continued (p.200)

51 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 3 - continued (p.200)

52 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 3 - continued (p.200)

53 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 3 - result (p.200)

54 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.11 A pie chart for income range

55 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Pivot Tables for Hypothesis Testing Younger cardholders purchase credit card insurance whereas more senior cardholders do not.

56 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.12 A pivot table showing age and credit card insurance choice

57 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Method 1

58 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.13 Grouping the credit card promotionn data by age

59 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.14 PivotTable Layout Wizard Method 2- Steps 1,2,3

60 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Method 2- Step 4

61 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Steps 4,5

62 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 6

63 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 7

64 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 8

65 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Result of Method 2 The average age for credit card insurance = no is approximately 41.42, whereas the average age for credit card insurance = yes is approximately 32.33

66 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Creating a Multidimensional Pivot Table Investigate relationships between the magazine, watch, and life insurance promotions relative to customer gender and income range.

67 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.15 A credit card promotion cube

68 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Steps 1,2,3 (p. 206)

69 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Steps 3 (after dragging life insurance promotion to DropData Items Here. ) Continue dragging watch promotion and magazine promotion to DropData Items Here.

70 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 3 (result)

71 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 4

72 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Decision Making – steps 1-3, p.207 A total of two customers took advantage of the life insurance and magazine promotions but did not purchase the watch promotion.

73 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.16 A pivot table with page variables for credit card promotions

74 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining

75 Result of p.207

76 Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining

77

78

79

80

81


Download ppt "Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Chapter 6 The Data Warehouse Jason C. H. Chen, Ph.D. Professor of MIS School of Business Administration."

Similar presentations


Ads by Google